Harrison Xavier A, Donaldson Lynda, Correa-Cano Maria Eugenia, Evans Julian, Fisher David N, Goodwin Cecily E D, Robinson Beth S, Hodgson David J, Inger Richard
Institute of Zoology, Zoological Society of London, London, UK.
Environment and Sustainability Institute, University of Exeter, Penryn, UK.
PeerJ. 2018 May 23;6:e4794. doi: 10.7717/peerj.4794. eCollection 2018.
The use of linear mixed effects models (LMMs) is increasingly common in the analysis of biological data. Whilst LMMs offer a flexible approach to modelling a broad range of data types, ecological data are often complex and require complex model structures, and the fitting and interpretation of such models is not always straightforward. The ability to achieve robust biological inference requires that practitioners know how and when to apply these tools. Here, we provide a general overview of current methods for the application of LMMs to biological data, and highlight the typical pitfalls that can be encountered in the statistical modelling process. We tackle several issues regarding methods of model selection, with particular reference to the use of information theory and multi-model inference in ecology. We offer practical solutions and direct the reader to key references that provide further technical detail for those seeking a deeper understanding. This overview should serve as a widely accessible code of best practice for applying LMMs to complex biological problems and model structures, and in doing so improve the robustness of conclusions drawn from studies investigating ecological and evolutionary questions.
线性混合效应模型(LMMs)在生物学数据分析中的应用日益普遍。虽然LMMs为建模广泛的数据类型提供了一种灵活的方法,但生态数据往往很复杂,需要复杂的模型结构,而且此类模型的拟合和解释并不总是直截了当的。要实现可靠的生物学推断,从业者需要知道如何以及何时应用这些工具。在此,我们对当前将LMMs应用于生物学数据的方法进行了总体概述,并强调了统计建模过程中可能遇到的典型陷阱。我们探讨了有关模型选择方法的几个问题,特别提及信息论和多模型推断在生态学中的应用。我们提供了实际解决方案,并为寻求更深入理解的读者指明了提供进一步技术细节的关键参考文献。本概述应成为将LMMs应用于复杂生物学问题和模型结构的广泛适用的最佳实践准则,从而提高从研究生态和进化问题得出的结论的稳健性。