Suppr超能文献

革兰氏阴性菌的细胞壁循环与抗生素耐药性的关联。

Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance.

机构信息

Department of Chemistry and Biochemistry, McCourtney Hall , University of Notre Dame , Notre Dame , Indiana 46556 , United States.

出版信息

Chem Rev. 2018 Jun 27;118(12):5952-5984. doi: 10.1021/acs.chemrev.8b00277. Epub 2018 May 30.

Abstract

The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.

摘要

细胞壁对细菌活力的重要性,突出体现在抗生素结构的多样性上,这些抗生素通过阻断负责细胞壁合成、维持和调节的关键酶来发挥作用。细胞壁完整性与抵抗机制的相互作用,以失活针对细胞壁的抗生素,涉及到细胞壁合成和重塑之间的精细协调,以及通过特定效应物调节基因调控来检测和响应抗生素。鉴于抗生素对医学实践的深远重要性,断言理解这种相互作用是细菌生理学中最重要的问题之一是可信的。ampCβ-内酰胺酶表达的神秘调节就是这一挑战的范例,ampCβ-内酰胺酶是某些革兰氏阴性菌对β-内酰胺类抗生素具有临床意义和高度调节的耐药反应的重要表现。这篇综述为这个引人入胜且尚未完全解决的 35 年之谜提供了当前的视角。

相似文献

1
Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance.
Chem Rev. 2018 Jun 27;118(12):5952-5984. doi: 10.1021/acs.chemrev.8b00277. Epub 2018 May 30.
2
Bacterial cell-wall recycling.
Ann N Y Acad Sci. 2013 Jan;1277(1):54-75. doi: 10.1111/j.1749-6632.2012.06813.x. Epub 2012 Nov 16.
3
Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.
Drug Resist Updat. 2016 Sep;28:91-104. doi: 10.1016/j.drup.2016.07.002. Epub 2016 Jul 29.
4
Beta-lactam antibiotic resistance: a current structural perspective.
Curr Opin Microbiol. 2005 Oct;8(5):525-33. doi: 10.1016/j.mib.2005.08.016.
6
Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
mBio. 2016 Oct 25;7(5):e01783-16. doi: 10.1128/mBio.01783-16.
7
Development of Whole-Cell Biosensors for Screening of Peptidoglycan-Targeting Antibiotics in a Gram-Negative Bacterium.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0084622. doi: 10.1128/aem.00846-22. Epub 2022 Aug 30.
10
Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.
Curr Protein Pept Sci. 2018;19(2):130-144. doi: 10.2174/0929866524666170724160623.

引用本文的文献

2
Design Principles of Nanosensors for Multiplex Detection of Contaminants in Food.
Small. 2025 Jul;21(26):e2412271. doi: 10.1002/smll.202412271. Epub 2025 May 7.
3
Mechanisms conferring bacterial cell wall variability and adaptivity.
Biochem Soc Trans. 2024 Oct 30;52(5):1981-1993. doi: 10.1042/BST20230027.
4
Fundamentals and Exceptions of the LysR-type Transcriptional Regulators.
ACS Synth Biol. 2024 Oct 18;13(10):3069-3092. doi: 10.1021/acssynbio.4c00219. Epub 2024 Sep 22.
5
Glaesserella parasuis serotype 4 exploits fibronectin via RlpA for tracheal colonization following porcine circovirus type 2 infection.
PLoS Pathog. 2024 Sep 12;20(9):e1012513. doi: 10.1371/journal.ppat.1012513. eCollection 2024 Sep.
6
Green synthesis of Zn-doped TIO nanoparticles from Zanthoxylum armatum.
BMC Plant Biol. 2024 Aug 31;24(1):820. doi: 10.1186/s12870-024-05525-3.
7
An unnatural amino acid dependent, conditional Pseudomonas vaccine prevents bacterial infection.
Nat Commun. 2024 Aug 8;15(1):6766. doi: 10.1038/s41467-024-50843-7.
9
Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR).
J Biol Inorg Chem. 2024 Aug;29(5):477-498. doi: 10.1007/s00775-024-02066-w. Epub 2024 Jul 12.
10
NagZ modulates the virulence of by acting through the gene of unknown function, ECL_03795.
Virulence. 2024 Dec;15(1):2367652. doi: 10.1080/21505594.2024.2367652. Epub 2024 Jun 24.

本文引用的文献

1
Identifying and exploiting genes that potentiate the evolution of antibiotic resistance.
Nat Ecol Evol. 2018 Jun;2(6):1033-1039. doi: 10.1038/s41559-018-0547-x. Epub 2018 Apr 23.
2
Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of .
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4393-4398. doi: 10.1073/pnas.1801298115. Epub 2018 Apr 9.
3
The crystal structure and oligomeric form of Escherichia colil,d-carboxypeptidase A.
Biochem Biophys Res Commun. 2018 May 15;499(3):594-599. doi: 10.1016/j.bbrc.2018.03.195. Epub 2018 Apr 5.
4
RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape.
Nat Commun. 2018 Mar 29;9(1):1280. doi: 10.1038/s41467-018-03633-x.
5
Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis.
Nature. 2018 Apr 5;556(7699):118-121. doi: 10.1038/nature25985. Epub 2018 Mar 28.
7
Membrane Potential Is Required for MurJ Function.
J Am Chem Soc. 2018 Apr 4;140(13):4481-4484. doi: 10.1021/jacs.8b00942. Epub 2018 Mar 26.
8
Mechanism and Kinetics of Aztreonam Hydrolysis Catalyzed by Class-C β-Lactamase: A Temperature-Accelerated Sliced Sampling Study.
J Phys Chem B. 2018 Apr 19;122(15):4299-4308. doi: 10.1021/acs.jpcb.8b01287. Epub 2018 Apr 4.
9
How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction.
Cell. 2018 Mar 8;172(6):1294-1305. doi: 10.1016/j.cell.2018.02.050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验