Suppr超能文献

钙调蛋白激酶 I 功能丧失破坏. 的盐厌恶学习。

Loss of CaMKI Function Disrupts Salt Aversive Learning in .

机构信息

Neurosciences Graduate Program.

Department of Genetics.

出版信息

J Neurosci. 2018 Jul 4;38(27):6114-6129. doi: 10.1523/JNEUROSCI.1611-17.2018. Epub 2018 Jun 6.

Abstract

The ability to adapt behavior to environmental fluctuations is critical for survival of organisms ranging from invertebrates to mammals. can learn to avoid sodium chloride when it is paired with starvation. This behavior may help animals avoid areas without food. Although some genes have been implicated in this salt-aversive learning behavior, critical genetic components, and the neural circuit in which they act, remain elusive. Here, we show that the sole worm ortholog of mammalian CaMKI/IV, CMK-1, is essential for salt-aversive learning behavior in hermaphrodites. We find that CMK-1 acts in the primary salt-sensing ASE neurons to regulate this behavior. By characterizing the intracellular calcium dynamics in ASE neurons using microfluidics, we find that loss of has subtle effects on sensory-evoked calcium responses in ASE axons and their modulation by salt conditioning. Our study implicates the expression of the conserved CaMKI/CMK-1 in chemosensory neurons as a regulator of behavioral plasticity to environmental salt in Like other animals, the nematode depends on salt for survival and navigates toward high concentrations of this essential mineral. In addition to its role as an essential nutrient, salt also causes osmotic stress at high concentrations. A growing body of evidence indicates that balances the requirement for salt with the danger it presents through a process called salt-aversive learning. We show that this behavior depends on expression of a calcium/calmodulin-dependent kinase, CMK-1, in the ASE salt-sensing neurons. Our study identifies CMK-1 and salt-sensitive chemosensory neurons as key factors in this form of behavioral plasticity.

摘要

从无脊椎动物到哺乳动物,适应环境波动的能力对生物体的生存至关重要。可以学会避免与饥饿配对的氯化钠。这种行为可以帮助动物避免没有食物的区域。尽管一些基因已被牵涉到这种避盐学习行为中,但关键的遗传成分和它们作用的神经回路仍然难以捉摸。在这里,我们表明,哺乳动物 CaMKI/IV 的唯一蠕虫直系同源物 CMK-1,对于雌雄同体的避盐学习行为是必不可少的。我们发现 CMK-1 在主要的盐感应 ASE 神经元中起作用,以调节这种行为。通过使用微流控技术对 ASE 神经元中的细胞内钙动力学进行表征,我们发现 缺失对 ASE 轴突中感觉诱发的钙反应及其对盐条件的调节有细微影响。我们的研究表明,保守的 CaMKI/CMK-1 在化学感觉神经元中的表达作为调节环境盐中行为可塑性的调节剂。像其他动物一样,线虫 依靠盐来生存,并朝着这种必需矿物质的高浓度方向前进。除了作为必需营养素的作用外,盐在高浓度下也会引起渗透胁迫。越来越多的证据表明, 通过一种称为避盐学习的过程来平衡对盐的需求及其带来的危险。我们表明,这种行为依赖于 CMK-1 在 ASE 盐感应神经元中的表达。我们的研究确定了 CMK-1 和盐敏感的化学感觉神经元是这种行为可塑性的关键因素。

相似文献

1
Loss of CaMKI Function Disrupts Salt Aversive Learning in .
J Neurosci. 2018 Jul 4;38(27):6114-6129. doi: 10.1523/JNEUROSCI.1611-17.2018. Epub 2018 Jun 6.
3
Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.
Genetics. 2010 Dec;186(4):1309-19. doi: 10.1534/genetics.110.119768. Epub 2010 Sep 13.
4
Multiple sensory neurons mediate starvation-dependent aversive navigation in .
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18673-18683. doi: 10.1073/pnas.1821716116. Epub 2019 Aug 27.
5
A Gustatory Neural Circuit of Generates Memory-Dependent Behaviors in Na Chemotaxis.
J Neurosci. 2017 Feb 22;37(8):2097-2111. doi: 10.1523/JNEUROSCI.1774-16.2017. Epub 2017 Jan 26.
7
Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.
Nat Neurosci. 2013 Oct;16(10):1461-7. doi: 10.1038/nn.3511. Epub 2013 Sep 8.
8
The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.
Neuron. 2006 Sep 7;51(5):613-25. doi: 10.1016/j.neuron.2006.07.024.

引用本文的文献

1
Glycogen supports glycolytic plasticity in neurons.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2509003122. doi: 10.1073/pnas.2509003122. Epub 2025 Jul 10.
2
CaMK modulates sensory neural activity to control longevity and proteostasis.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2423428122. doi: 10.1073/pnas.2423428122. Epub 2025 May 13.
5
Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory.
iScience. 2025 Mar 13;28(4):112215. doi: 10.1016/j.isci.2025.112215. eCollection 2025 Apr 18.
6
Satiety, TAX-4, and OSM-9 Tune the Attraction of Nematodes to Microbial Fermentation Products.
bioRxiv. 2025 Feb 25:2025.02.21.639594. doi: 10.1101/2025.02.21.639594.
7
Behavioral screening reveals a conserved residue in Y-Box RNA-binding protein required for associative learning and memory in C. elegans.
PLoS Genet. 2024 Oct 18;20(10):e1011443. doi: 10.1371/journal.pgen.1011443. eCollection 2024 Oct.
8
A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans.
PLoS Biol. 2024 Jun 27;22(6):e3002672. doi: 10.1371/journal.pbio.3002672. eCollection 2024 Jun.
9
Behavioral Tests for Associative Learning in Caenorhabditis elegans.
Methods Mol Biol. 2024;2746:21-46. doi: 10.1007/978-1-0716-3585-8_2.

本文引用的文献

2
Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap.
Lab Chip. 2017 Mar 14;17(6):1116-1127. doi: 10.1039/c6lc01165a.
3
The Bright Fluorescent Protein mNeonGreen Facilitates Protein Expression Analysis .
G3 (Bethesda). 2017 Feb 9;7(2):607-615. doi: 10.1534/g3.116.038133.
5
The CaM Kinase CMK-1 Mediates a Negative Feedback Mechanism Coupling the C. elegans Glutamate Receptor GLR-1 with Its Own Transcription.
PLoS Genet. 2016 Jul 27;12(7):e1006180. doi: 10.1371/journal.pgen.1006180. eCollection 2016 Jul.
6
Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.
Cell Rep. 2016 Jan 5;14(1):11-21. doi: 10.1016/j.celrep.2015.11.064. Epub 2015 Dec 24.
8
Evolutionary and functional perspectives on signaling from neuronal surface to nucleus.
Biochem Biophys Res Commun. 2015 Apr 24;460(1):88-99. doi: 10.1016/j.bbrc.2015.02.146.
9
Neuronal responses to stress and injury in C. elegans.
FEBS Lett. 2015 Jun 22;589(14):1644-52. doi: 10.1016/j.febslet.2015.05.005. Epub 2015 May 13.
10
The biopsychology of salt hunger and sodium deficiency.
Pflugers Arch. 2015 Mar;467(3):445-56. doi: 10.1007/s00424-014-1676-y. Epub 2015 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验