Suppr超能文献

儿童支气管肺泡灌洗液的无培养分析。

Culture-Independent Analysis of Pediatric Bronchoalveolar Lavage Specimens.

机构信息

1 Department of Pediatrics, Columbia University Medical Center, New York, New York.

2 Department of Infection Prevention and Control, New York-Presbyterian, Morgan Stanley Children's Hospital, New York, New York.

出版信息

Ann Am Thorac Soc. 2018 Sep;15(9):1047-1056. doi: 10.1513/AnnalsATS.201802-146OC.

Abstract

RATIONALE

The clinical utility of culture-independent testing of pediatric BAL specimens is unknown. In addition, the variability of the pediatric pulmonary microbiome with patient characteristics is not well understood.

OBJECTIVES

To compare testing with 16S rRNA gene-based sequencing to conventional cultures of BAL specimens in children Methods: Study subjects were not more than 22 years old and underwent BAL from May 2013 to August 2015 as part of clinical care. DNA extracted from BAL specimens was used for 16S rRNA gene-based analysis, and results were compared with routine cultures from the same samples. Indices of microbial diversity and relative taxon abundances were compared on the basis of subject characteristics (diagnosis and antibiotic use).

RESULTS

From 81 participants (male, 51%; median age, 9 yr), 89 samples were collected. The 16S rRNA genes of 77 samples (86.5%) from 70 subjects were successfully analyzed. These 70 subjects included 23 with cystic fibrosis, 19 who were immunocompromised, and 28 who were nonimmunocompromised. Of 68 organisms identified in culture, 16S rRNA gene-based analyses detected corresponding taxa in 66 (97.1%) and also identified potentially clinically significant organisms missed by cultures (e.g., Staphylococcus, Legionella, and Pseudomonas). Taxa that varied significantly with diagnosis and antibiotic use included Veillonella, Corynebacterium, Haemophilus, and Streptococcus. The microbiota of cystic fibrosis samples was less diverse. A "core" group of 15 taxa present in all three diagnosis groups was identified.

CONCLUSIONS

Culture-independent analysis was concordant with routine cultures and showed the potential to detect noncultured pathogens. Although culture-independent testing identified relative changes in organism abundance associated with clinical characteristics, distinct microbiome profiles associated with disease states were not identified.

摘要

背景

小儿 BAL 标本的非培养检测的临床实用性尚不清楚。此外,儿童肺部微生物组随患者特征的变化尚不清楚。

目的

比较 16S rRNA 基因测序与 BAL 标本常规培养在儿童中的检测结果。

方法

研究对象年龄不超过 22 岁,在 2013 年 5 月至 2015 年 8 月期间因临床需要进行 BAL。从 BAL 标本中提取 DNA,用于 16S rRNA 基因分析,并将结果与同一标本的常规培养结果进行比较。根据患者特征(诊断和抗生素使用)比较微生物多样性和相对分类群丰度的指标。

结果

81 名参与者(男性 51%;中位年龄 9 岁)中,共采集了 89 个样本。70 名受试者中 77 个样本(86.5%)的 16S rRNA 基因分析成功。这 70 名受试者中包括 23 名囊性纤维化患者、19 名免疫功能低下患者和 28 名非免疫功能低下患者。在培养鉴定的 68 种微生物中,基于 16S rRNA 基因分析检测到 66 种(97.1%)相应的分类群,还发现了培养遗漏的潜在临床重要微生物(如葡萄球菌、军团菌和假单胞菌)。与诊断和抗生素使用显著相关的分类群包括韦荣球菌属、棒状杆菌属、嗜血杆菌属和链球菌属。囊性纤维化样本的微生物群多样性较低。确定了一组存在于所有三个诊断组的 15 个核心分类群。

结论

非培养分析与常规培养一致,并显示出检测非培养病原体的潜力。尽管非培养检测鉴定了与临床特征相关的生物量相对变化,但未确定与疾病状态相关的独特微生物组谱。

相似文献

1
Culture-Independent Analysis of Pediatric Bronchoalveolar Lavage Specimens.
Ann Am Thorac Soc. 2018 Sep;15(9):1047-1056. doi: 10.1513/AnnalsATS.201802-146OC.
2
The lower airway microbiota in early cystic fibrosis lung disease: a longitudinal analysis.
Thorax. 2017 Dec;72(12):1104-1112. doi: 10.1136/thoraxjnl-2016-209279. Epub 2017 Mar 9.
3
Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation.
PLoS One. 2019 Sep 19;14(9):e0222323. doi: 10.1371/journal.pone.0222323. eCollection 2019.
4
Differences of lung microbiome in patients with clinically stable and exacerbated bronchiectasis.
PLoS One. 2017 Aug 22;12(8):e0183553. doi: 10.1371/journal.pone.0183553. eCollection 2017.
5
Divergence of bacterial communities in the lower airways of CF patients in early childhood.
PLoS One. 2021 Oct 6;16(10):e0257838. doi: 10.1371/journal.pone.0257838. eCollection 2021.
6
In children, the microbiota of the nasopharynx and bronchoalveolar lavage fluid are both similar and different.
Pediatr Pulmonol. 2018 Apr;53(4):475-482. doi: 10.1002/ppul.23953. Epub 2018 Feb 6.
7
Airway microbiota across age and disease spectrum in cystic fibrosis.
Eur Respir J. 2017 Nov 16;50(5). doi: 10.1183/13993003.00832-2017. Print 2017 Nov.
8
Bronchoscopy-guided antimicrobial therapy for cystic fibrosis.
Cochrane Database Syst Rev. 2013 Dec 23(12):CD009530. doi: 10.1002/14651858.CD009530.pub2.
10
The microbial community of the cystic fibrosis airway is disrupted in early life.
PLoS One. 2014 Dec 19;9(12):e109798. doi: 10.1371/journal.pone.0109798. eCollection 2014.

引用本文的文献

1
16S Ribosomal RNA Gene PCR and Sequencing for Pediatric Infection Diagnosis, United States, 2020-2023.
Emerg Infect Dis. 2025 May;31(13):129-136. doi: 10.3201/eid3113.241101.
2
Microbial alterations in the lungs of children with chronic pulmonary aspiration.
Front Pediatr. 2025 Apr 11;13:1520487. doi: 10.3389/fped.2025.1520487. eCollection 2025.
4
Utility of Broad-Range PCR Sequencing for Infectious Diseases Clinical Decision Making: a Pediatric Center Experience.
J Clin Microbiol. 2022 May 18;60(5):e0243721. doi: 10.1128/jcm.02437-21. Epub 2022 Apr 11.
5
The Yin and Yang of Lung Infections in Cystic Fibrosis: a Model for Studying Polymicrobial Interactions.
J Bacteriol. 2019 May 8;201(11). doi: 10.1128/JB.00115-19. Print 2019 Jun 1.

本文引用的文献

1
Airway microbiota across age and disease spectrum in cystic fibrosis.
Eur Respir J. 2017 Nov 16;50(5). doi: 10.1183/13993003.00832-2017. Print 2017 Nov.
2
Rapid Pathogen Identification in Bacterial Pneumonia Using Real-Time Metagenomics.
Am J Respir Crit Care Med. 2017 Dec 15;196(12):1610-1612. doi: 10.1164/rccm.201703-0537LE.
3
The microbiota of the respiratory tract: gatekeeper to respiratory health.
Nat Rev Microbiol. 2017 May;15(5):259-270. doi: 10.1038/nrmicro.2017.14. Epub 2017 Mar 20.
4
The lower airway microbiota in early cystic fibrosis lung disease: a longitudinal analysis.
Thorax. 2017 Dec;72(12):1104-1112. doi: 10.1136/thoraxjnl-2016-209279. Epub 2017 Mar 9.
5
Bacterial Topography of the Healthy Human Lower Respiratory Tract.
mBio. 2017 Feb 14;8(1):e02287-16. doi: 10.1128/mBio.02287-16.
7
Diagnostic yield of bronchoalveolar lavage in immunocompromised children with malignant and non-malignant disorders.
Pediatr Pulmonol. 2017 Jun;52(6):820-826. doi: 10.1002/ppul.23644. Epub 2017 Jan 3.
8
Airway Microbiota in Bronchoalveolar Lavage Fluid from Clinically Well Infants with Cystic Fibrosis.
PLoS One. 2016 Dec 8;11(12):e0167649. doi: 10.1371/journal.pone.0167649. eCollection 2016.
9
Absolute quantification of microbial taxon abundances.
ISME J. 2017 Feb;11(2):584-587. doi: 10.1038/ismej.2016.117. Epub 2016 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验