Suppr超能文献

腺苷 A2a 受体抑制调节 T 细胞共抑制受体的表达,并改善效应功能,以增强检查点阻断和 ACT 在小鼠癌症模型中的作用。

Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models.

机构信息

Department of Oncology, Sidney-Kimmel Comprehensive Cancer Research Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

MedImmune, LLC, Gaithersburg, MD, 20878, USA.

出版信息

Cancer Immunol Immunother. 2018 Aug;67(8):1271-1284. doi: 10.1007/s00262-018-2186-0. Epub 2018 Jun 19.

Abstract

Adenosine signaling via the A2a receptor (A2aR) is emerging as an important checkpoint of immune responses. The presence of adenosine in the inflammatory milieu or generated by the CD39/CD73 axis on tissues or T regulatory cells serves to regulate immune responses. By nature of the specialized metabolism of cancer cells, adenosine levels are increased in the tumor microenvironment and contribute to tumor immune evasion. To this end, small molecule inhibitors of the A2aR are being pursued clinically to enhance immunotherapy. Herein, we demonstrate the ability of the novel A2aR antagonist, CPI-444, to dramatically enhance immunologic responses in models of checkpoint therapy and ACT in cancer. Furthermore, we demonstrate that A2aR blockade with CPI-444 decreases expression of multiple checkpoint pathways, including PD-1 and LAG-3, on both CD8+ effector T cells (Teff) and FoxP3+ CD4+ regulatory T cells (Tregs). Interestingly, our studies demonstrate that A2aR blockade likely has its most profound effects during Teff cell activation, significantly decreasing PD-1 and LAG-3 expression at the draining lymph nodes of tumor bearing mice. In contrast to previous reports using A2aR knockout models, pharmacologic blockade with CPI-444 did not impede CD8 T cell persistence or memory recall. Overall these findings not only redefine our understanding of the mechanisms by which adenosine inhibits immunity but also have important implications for the design of novel immunotherapy regimens.

摘要

腺苷通过 A2a 受体 (A2aR) 的信号传递,正在成为免疫反应的一个重要检查点。腺苷在炎症环境中的存在或由组织或 T 调节细胞上的 CD39/CD73 轴产生,可用于调节免疫反应。由于癌细胞的特殊代谢,肿瘤微环境中的腺苷水平增加,并有助于肿瘤免疫逃逸。为此,正在临床中探索 A2aR 的小分子抑制剂,以增强免疫疗法。在此,我们证明了新型 A2aR 拮抗剂 CPI-444 能够显著增强癌症中检查点治疗和 ACT 模型中的免疫反应。此外,我们证明 CPI-444 阻断 A2aR 可降低多个检查点途径的表达,包括 CD8+效应 T 细胞(Teff)和 FoxP3+CD4+调节性 T 细胞(Treg)上的 PD-1 和 LAG-3。有趣的是,我们的研究表明,A2aR 阻断可能在 Teff 细胞激活期间产生最深远的影响,显著降低荷瘤小鼠引流淋巴结中 PD-1 和 LAG-3 的表达。与先前使用 A2aR 敲除模型的报道相反,CPI-444 的药物阻断并没有阻碍 CD8 T 细胞的持久性或记忆召回。总的来说,这些发现不仅重新定义了我们对腺苷抑制免疫的机制的理解,而且对新型免疫治疗方案的设计具有重要意义。

相似文献

5
Adenosine Generated by Regulatory T Cells Induces CD8 T Cell Exhaustion in Gastric Cancer through A2aR Pathway.
Biomed Res Int. 2019 Dec 14;2019:4093214. doi: 10.1155/2019/4093214. eCollection 2019.
6
A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models.
Cancer Immunol Res. 2018 Oct;6(10):1136-1149. doi: 10.1158/2326-6066.CIR-18-0056. Epub 2018 Aug 21.
7
Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity.
Cancer Immunol Immunother. 2019 Jul;68(7):1095-1106. doi: 10.1007/s00262-019-02346-4. Epub 2019 May 18.
8
Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses.
Cancer Immunol Res. 2015 May;3(5):506-17. doi: 10.1158/2326-6066.CIR-14-0211. Epub 2015 Feb 11.
9
Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment.
Cancer Res. 2014 Dec 15;74(24):7250-9. doi: 10.1158/0008-5472.CAN-13-3583. Epub 2014 Nov 6.
10
CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice.
Gastroenterology. 2010 Sep;139(3):1030-40. doi: 10.1053/j.gastro.2010.05.007. Epub 2010 Jun 25.

引用本文的文献

1
The glioma microenvironment and its impact on antitumor immunity.
Neurooncol Adv. 2025 Sep 9;7(Suppl 4):iv19-iv31. doi: 10.1093/noajnl/vdae204. eCollection 2025 Sep.
2
Strategies to Overcome PD-1/PD-L1 Blockade Resistance: Focusing on Combination with Immune Checkpoint Blockades.
J Cancer. 2025 Jul 24;16(11):3425-3449. doi: 10.7150/jca.108163. eCollection 2025.
6
Insights from Clinical Trials on A Adenosine Receptor Antagonists for Cancer Treatment.
ACS Pharmacol Transl Sci. 2025 May 2;8(6):1498-1512. doi: 10.1021/acsptsci.5c00057. eCollection 2025 Jun 13.
7
Research progress of CD73-adenosine signaling regulating hepatocellular carcinoma through tumor microenvironment.
J Exp Clin Cancer Res. 2025 May 26;44(1):161. doi: 10.1186/s13046-025-03416-5.
8
The progress and prospects of targeting the adenosine pathway in cancer immunotherapy.
Biomark Res. 2025 May 19;13(1):75. doi: 10.1186/s40364-025-00784-0.
9
The gut microbiome and cancer: from tumorigenesis to therapy.
Nat Metab. 2025 May 6. doi: 10.1038/s42255-025-01287-w.

本文引用的文献

1
Targeting immunosuppressive adenosine in cancer.
Nat Rev Cancer. 2017 Dec;17(12):709-724. doi: 10.1038/nrc.2017.86. Epub 2017 Oct 23.
2
Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy.
Cell Metab. 2017 Jul 5;26(1):94-109. doi: 10.1016/j.cmet.2017.06.016.
3
Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments.
Cell Metab. 2017 Jun 6;25(6):1282-1293.e7. doi: 10.1016/j.cmet.2016.12.018. Epub 2017 Apr 13.
4
Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent.
Science. 2017 Mar 31;355(6332):1423-1427. doi: 10.1126/science.aaf0683. Epub 2017 Mar 9.
5
T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition.
Science. 2017 Mar 31;355(6332):1428-1433. doi: 10.1126/science.aaf1292. Epub 2017 Mar 9.
6
Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy.
J Clin Invest. 2017 Mar 1;127(3):929-941. doi: 10.1172/JCI89455. Epub 2017 Feb 6.
7
Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E761-E770. doi: 10.1073/pnas.1620433114. Epub 2017 Jan 17.
8
Hypoxia and cellular metabolism in tumour pathophysiology.
J Physiol. 2017 Apr 15;595(8):2439-2450. doi: 10.1113/JP273309. Epub 2017 Feb 19.
9
Germinal Center Hypoxia Potentiates Immunoglobulin Class Switch Recombination.
J Immunol. 2016 Nov 15;197(10):4014-4020. doi: 10.4049/jimmunol.1601401. Epub 2016 Oct 19.
10
T-cell immunometabolism against cancer.
Cancer Lett. 2016 Nov 28;382(2):255-258. doi: 10.1016/j.canlet.2016.09.003. Epub 2016 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验