1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina.
2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.
Antioxid Redox Signal. 2018 Dec 1;29(16):1691-1724. doi: 10.1089/ars.2017.7453. Epub 2018 Aug 28.
After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP (BMX-010, AEOL10113) and MnTnBuOE-2-PyP (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/HO/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level.
Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue.
Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
经过大约三十年的研究,两种锰(III)卟啉(MnPs),MnTE-2-PyP(BMX-010,AEOL10113)和 MnTnBuOE-2-PyP(BMX-001),已经进展到五项临床试验。与此同时,另一种同样有效的基于金属的超氧化物歧化酶(SOD)模拟物-Mn(II)五氮杂大环,GC4419,已在临床试验中用于应用,与 MnTnBuOE-2-PyP 相同-头颈癌患者正常组织的放射防护。这清楚地表明,针对细胞氧化还原环境的锰复合物已经成熟到可以进行临床应用的程度。最新进展:虽然最初是作为 SOD 模拟物开发的,但 MnPs 与许多氧化还原敏感途径(如涉及核因子κB(NF-κB)和核因子 E2 相关因子 2(Nrf2)的途径)发生复杂的相互作用,从而影响细胞转录活性。越来越多的数据支持这样一种观点,即 MnP/HO/谷胱甘肽(GSH)驱动的蛋白质半胱氨酸 S-谷胱甘肽化的催化作用,与蛋白质功能的修饰有关,是 MnP 在分子水平上对蛋白质的主要作用。
MnP 对正常细胞/组织与肿瘤细胞/组织的不同作用,支持它们转化为临床应用,源于它们在这些组织中的积累和氧化还原环境的差异。这反过来又导致 MnP 驱动的蛋白质修饰的不同产量。到目前为止,在肿瘤中提供了 NF-κB、丝裂原激活蛋白激酶(MAPK)、磷酸酶、Nrf2 和内源性抗氧化防御的这种修饰的直接证据,而间接证据表明 MnP 在正常组织中 NF-κB 和 Nrf2 翻译活性的修饰。
缺乏同时探索同一动物中差异影响的研究,而这些研究对于理解金属基药物与正常和癌细胞/组织复杂细胞网络的极其复杂相互作用至关重要。