Suppr超能文献

免疫驱动和力学介导的组织工程血管移植物中的新生组织形成。

Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.

Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.

出版信息

Ann Biomed Eng. 2018 Nov;46(11):1938-1950. doi: 10.1007/s10439-018-2086-7. Epub 2018 Jul 9.

Abstract

In vivo development of a neovessel from an implanted biodegradable polymeric scaffold depends on a delicate balance between polymer degradation and native matrix deposition. Studies in mice suggest that this balance is dictated by immuno-driven and mechanotransduction-mediated processes, with neotissue increasingly balancing the hemodynamically induced loads as the polymer degrades. Computational models of neovessel development can help delineate relative time-dependent contributions of the immunobiological and mechanobiological processes that determine graft success or failure. In this paper, we compare computational results informed by long-term studies of neovessel development in immuno-compromised and immuno-competent mice. Simulations suggest that an early exuberant inflammatory response can limit subsequent mechano-sensing by synthetic intramural cells and thereby attenuate the desired long-term mechano-mediated production of matrix. Simulations also highlight key inflammatory differences in the two mouse models, which allow grafts in the immuno-compromised mouse to better match the biomechanical properties of the native vessel. Finally, the predicted inflammatory time courses revealed critical periods of graft remodeling. We submit that computational modeling can help uncover mechanisms of observed neovessel development and improve the design of the scaffold or its clinical use.

摘要

植入可生物降解聚合物支架后的新生血管的体内发育取决于聚合物降解和天然基质沉积之间的微妙平衡。在小鼠中的研究表明,这种平衡是由免疫驱动和力学转导介导的过程决定的,随着聚合物的降解,新生组织逐渐平衡血流动力学诱导的负荷。新生血管发育的计算模型可以帮助描绘决定移植物成功或失败的免疫生物学和力学生物学过程的相对时变贡献。在本文中,我们比较了基于免疫缺陷和免疫功能正常小鼠的新生血管发育的长期研究的计算结果。模拟表明,早期过度的炎症反应可能会限制合成壁内细胞的后续力学感应,从而减弱对所需的长期力学介导的基质产生的影响。模拟还突出了两种小鼠模型之间的关键炎症差异,这使得免疫缺陷小鼠中的移植物能够更好地匹配天然血管的生物力学特性。最后,预测的炎症时间过程揭示了移植物重塑的关键时期。我们认为,计算建模可以帮助揭示观察到的新生血管发育的机制,并改进支架的设计或其临床应用。

相似文献

1
Immuno-driven and Mechano-mediated Neotissue Formation in Tissue Engineered Vascular Grafts.
Ann Biomed Eng. 2018 Nov;46(11):1938-1950. doi: 10.1007/s10439-018-2086-7. Epub 2018 Jul 9.
3
A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development.
Integr Biol (Camb). 2020 Apr 14;12(3):47-63. doi: 10.1093/intbio/zyaa004.
5
A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation.
Acta Biomater. 2015 Jan;11:283-94. doi: 10.1016/j.actbio.2014.09.046. Epub 2014 Oct 5.
6
Effects of Braiding Parameters on Tissue Engineered Vascular Graft Development.
Adv Healthc Mater. 2020 Dec;9(24):e2001093. doi: 10.1002/adhm.202001093. Epub 2020 Oct 15.
7
Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct.
J Biomech. 2014 Jun 27;47(9):2080-7. doi: 10.1016/j.jbiomech.2013.10.009. Epub 2013 Oct 21.
8
Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling.
Tissue Eng Part C Methods. 2019 Oct;25(10):561-570. doi: 10.1089/ten.TEC.2019.0086. Epub 2019 Sep 3.
9
Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation.
J Biomech. 2014 Jun 27;47(9):2070-9. doi: 10.1016/j.jbiomech.2014.03.011. Epub 2014 Mar 15.
10
Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth.
Commun Med (Lond). 2022 Jan 10;2:3. doi: 10.1038/s43856-021-00063-7. eCollection 2022.

引用本文的文献

2
Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts.
J Biomech. 2025 Jun;186:112670. doi: 10.1016/j.jbiomech.2025.112670. Epub 2025 Apr 18.
3
FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method.
Comput Methods Appl Mech Eng. 2024 Nov 1;431. doi: 10.1016/j.cma.2024.117259. Epub 2024 Aug 6.
4
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
5
Tissue engineered vascular grafts are resistant to the formation of dystrophic calcification.
Nat Commun. 2024 Mar 11;15(1):2187. doi: 10.1038/s41467-024-46431-4.
7
A Fluid-Solid-Growth Solver for Cardiovascular Modeling.
Comput Methods Appl Mech Eng. 2023 Dec 15;417(Pt B). doi: 10.1016/j.cma.2023.116312. Epub 2023 Aug 9.
8
A computational growth and remodeling framework for adaptive and maladaptive pulmonary arterial hemodynamics.
Biomech Model Mechanobiol. 2023 Dec;22(6):1935-1951. doi: 10.1007/s10237-023-01744-z. Epub 2023 Sep 2.
9
The Influence of Textile Structure Characteristics on the Performance of Artificial Blood Vessels.
Polymers (Basel). 2023 Jul 10;15(14):3003. doi: 10.3390/polym15143003.
10
In-vivo evaluation of silk fibroin small-diameter vascular grafts: state of art of preclinical studies and animal models.
Front Surg. 2023 May 26;10:1090565. doi: 10.3389/fsurg.2023.1090565. eCollection 2023.

本文引用的文献

1
Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension.
Biomech Model Mechanobiol. 2018 Oct;17(5):1497-1511. doi: 10.1007/s10237-018-1041-8. Epub 2018 Jun 7.
3
Stress Analysis-Driven Design of Bilayered Scaffolds for Tissue-Engineered Vascular Grafts.
J Biomech Eng. 2017 Dec 1;139(12):1210081-12100810. doi: 10.1115/1.4037856.
4
Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status.
Trends Cardiovasc Med. 2017 Nov;27(8):521-531. doi: 10.1016/j.tcm.2017.06.013. Epub 2017 Jun 21.
6
A mixture approach to investigate interstitial growth in engineering scaffolds.
Biomech Model Mechanobiol. 2016 Apr;15(2):259-78. doi: 10.1007/s10237-015-0684-y. Epub 2015 Jun 6.
7
The innate immune system contributes to tissue-engineered vascular graft performance.
FASEB J. 2015 Jun;29(6):2431-8. doi: 10.1096/fj.14-268334. Epub 2015 Feb 20.
8
Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation.
Tissue Eng Part A. 2015 May;21(9-10):1529-38. doi: 10.1089/ten.tea.2014.0524. Epub 2015 Feb 24.
9
Computational simulation of the adaptive capacity of vein grafts in response to increased pressure.
J Biomech Eng. 2015 Mar;137(3):0310091-03100910. doi: 10.1115/1.4029021. Epub 2015 Jan 29.
10
A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation.
Acta Biomater. 2015 Jan;11:283-94. doi: 10.1016/j.actbio.2014.09.046. Epub 2014 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验