Suppr超能文献

新型α-突触核蛋白 PET 成像示踪剂的计算机模拟、体外和体内评价。

In Silico, in Vitro, and in Vivo Evaluation of New Candidates for α-Synuclein PET Imaging.

机构信息

Université de Lyon, Université Claude Bernard Lyon 1, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028 , Lyon 69361 , France.

Hospices Civils de Lyon , Lyon 69361 , France.

出版信息

Mol Pharm. 2018 Aug 6;15(8):3153-3166. doi: 10.1021/acs.molpharmaceut.8b00229. Epub 2018 Jul 25.

Abstract

Accumulation of α-synuclein (α-syn) is a neuropathological hallmark of synucleinopathies. To date, no selective α-syn positron emission tomography (PET) radiotracer has been identified. Our objective was to develop the first original, selective, and specific α-syn PET radiotracer. Chemical design inspired from three structural families that demonstrated interesting α-syn binding characteristics was used as a starting point. Bioinformatics modeling of α-syn fibrils was then employed to select the best molecular candidates before their syntheses. An in vitro binding assay was performed to evaluate the affinity of the compounds. Radiotracer specificity and selectivity were assessed by in vitro autoradiography and in vivo PET studies in animal (rodents) models. Finally, gold standard in vitro autoradiography with patients' postmortem tissues was performed to confirm/infirm the α-syn binding characteristics. Two compounds exhibited a good brain availability and bound to α-syn and Aβ fibrils in a rat model. In contrast, no signal was observed in a mouse model of synucleinopathy. Experiments in human tissues confirmed these negative results.

摘要

α-突触核蛋白(α-syn)的积累是突触核蛋白病的神经病理学标志。迄今为止,尚未发现选择性α-突触核蛋白正电子发射断层扫描(PET)示踪剂。我们的目标是开发第一个原创的、选择性的和特异性的α-syn PET 示踪剂。受三种结构家族的启发进行化学设计,这些家族展示了有趣的α-syn 结合特性,作为起点。然后,通过生物信息学对α-syn 原纤维进行建模,以选择最佳的分子候选物,然后进行合成。通过体外结合测定来评估化合物的亲和力。通过体外放射自显影和动物(啮齿动物)模型的体内 PET 研究评估放射性示踪剂的特异性和选择性。最后,使用患者死后组织进行金标准的体外放射自显影,以确认/否定与α-syn 的结合特性。两种化合物在大鼠模型中表现出良好的脑可及性,并与α-syn 和 Aβ 原纤维结合。相比之下,在突触核蛋白病的小鼠模型中未观察到信号。在人类组织中的实验证实了这些阴性结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验