Balatti G E, Martini M F, Pickholz M
Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina.
CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina.
J Mol Model. 2018 Jul 17;24(8):208. doi: 10.1007/s00894-018-3747-z.
In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide-lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria. Graphical Abstract Aurein pore structure (green) in a lipid bilayer composed by POPE (blue) and POPG (red) mixture. It is possible to see water beads (light blue) inside the pore.
在本研究中,我们研究了抗菌肽奥瑞因1.2(aurein 1.2)和黄斑肽1.1(maculatin 1.1)与由1-棕榈酰-2-油酰-sn-甘油-3-磷酸-(1'-rac-甘油)(POPG)和1-棕榈酰-2-油酰-sn-甘油-3-磷酸乙醇胺(POPE)的脂质混合物组成的双层膜之间的差异相互作用。我们在MARTINI力场中使用粗粒度方法进行了分子动力学(MD)模拟。POPE/POPG混合物被用作细菌(原核细胞)膜的简单模型。将结果与我们之前关于1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)(一种哺乳动物细胞的代表性脂质)结构的研究结果进行了比较。我们从两种不同的初始条件开始肽-脂质系统的模拟:水中的肽和膜疏水核心内的肽,在两种情况下均采用预组装的脂质双层。我们的结果表明,与肽在POPC膜中的行为相比,肽在POPE/POPG中的分子行为既有相似之处也有不同之处。例如,奥瑞因1.2分子在POPG/POPE和POPC膜上都可以形成类似的孔状结构,但在前一种膜中肽在疏水核心中更深。相反,黄斑肽1.1分子在两种双层膜中都形成非常相似的结构:它们有强烈的形成簇并诱导曲率的趋势。因此,本研究结果为这两种肽引起膜泄漏的作用机制提供了见解,这使生物体能够保护自己免受潜在有害细菌的侵害。图形摘要:由POPE(蓝色)和POPG(红色)混合物组成的脂质双层中的奥瑞因孔结构(绿色)。可以看到孔内有水珠(浅蓝色)。