Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom.
Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom;
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7341-E7350. doi: 10.1073/pnas.1805827115. Epub 2018 Jul 20.
The 9 + 2 axoneme structure of the motile flagellum/cilium is an iconic, apparently symmetrical cellular structure. Recently, asymmetries along the length of motile flagella have been identified in a number of organisms, typically in the inner and outer dynein arms. Flagellum-beat waveforms are adapted for different functions. They may start either near the flagellar tip or near its base and may be symmetrical or asymmetrical. We hypothesized that proximal/distal asymmetry in the molecular composition of the axoneme may control the site of waveform initiation and the direction of waveform propagation. The unicellular eukaryotic pathogens and often switch between tip-to-base and base-to-tip waveforms, making them ideal for analysis of this phenomenon. We show here that the proximal and distal portions of the flagellum contain distinct outer dynein arm docking-complex heterodimers. This proximal/distal asymmetry is produced and maintained through growth by a concentration gradient of the proximal docking complex, generated by intraflagellar transport. Furthermore, this asymmetry is involved in regulating whether a tip-to-base or base-to-tip beat occurs, which is linked to a calcium-dependent switch. Our data show that the mechanism for generating proximal/distal flagellar asymmetry can control waveform initiation and propagation direction.
游动鞭毛/纤毛的 9+2 轴丝结构是一种标志性的、显然对称的细胞结构。最近,在许多生物体中,已经确定了沿游动鞭毛的长度存在不对称性,通常在外和内动力蛋白臂中。鞭毛拍动波形适应不同的功能。它们可以从鞭毛的尖端或基部附近开始,并且可以是对称的或不对称的。我们假设轴丝分子组成的近端/远端不对称可能控制波形起始的位置和波形传播的方向。单细胞真核病原体 和 经常在尖端到基部和基部到尖端的波形之间切换,使它们成为分析这种现象的理想选择。我们在这里表明,鞭毛的近端和远端部分包含不同的外动力蛋白臂对接复合物异二聚体。这种近端/远端不对称是通过由内鞭毛运输产生的近端对接复合物的浓度梯度在生长过程中产生和维持的。此外,这种不对称性参与调节发生尖端到基部还是基部到尖端的拍动,这与钙依赖性开关有关。我们的数据表明,产生近端/远端鞭毛不对称的机制可以控制波形起始和传播方向。