Suppr超能文献

鞭毛拍动的方向由近端/远端外臂动力蛋白不对称控制。

Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry.

机构信息

Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom.

Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom;

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7341-E7350. doi: 10.1073/pnas.1805827115. Epub 2018 Jul 20.

Abstract

The 9 + 2 axoneme structure of the motile flagellum/cilium is an iconic, apparently symmetrical cellular structure. Recently, asymmetries along the length of motile flagella have been identified in a number of organisms, typically in the inner and outer dynein arms. Flagellum-beat waveforms are adapted for different functions. They may start either near the flagellar tip or near its base and may be symmetrical or asymmetrical. We hypothesized that proximal/distal asymmetry in the molecular composition of the axoneme may control the site of waveform initiation and the direction of waveform propagation. The unicellular eukaryotic pathogens and often switch between tip-to-base and base-to-tip waveforms, making them ideal for analysis of this phenomenon. We show here that the proximal and distal portions of the flagellum contain distinct outer dynein arm docking-complex heterodimers. This proximal/distal asymmetry is produced and maintained through growth by a concentration gradient of the proximal docking complex, generated by intraflagellar transport. Furthermore, this asymmetry is involved in regulating whether a tip-to-base or base-to-tip beat occurs, which is linked to a calcium-dependent switch. Our data show that the mechanism for generating proximal/distal flagellar asymmetry can control waveform initiation and propagation direction.

摘要

游动鞭毛/纤毛的 9+2 轴丝结构是一种标志性的、显然对称的细胞结构。最近,在许多生物体中,已经确定了沿游动鞭毛的长度存在不对称性,通常在外和内动力蛋白臂中。鞭毛拍动波形适应不同的功能。它们可以从鞭毛的尖端或基部附近开始,并且可以是对称的或不对称的。我们假设轴丝分子组成的近端/远端不对称可能控制波形起始的位置和波形传播的方向。单细胞真核病原体 和 经常在尖端到基部和基部到尖端的波形之间切换,使它们成为分析这种现象的理想选择。我们在这里表明,鞭毛的近端和远端部分包含不同的外动力蛋白臂对接复合物异二聚体。这种近端/远端不对称是通过由内鞭毛运输产生的近端对接复合物的浓度梯度在生长过程中产生和维持的。此外,这种不对称性参与调节发生尖端到基部还是基部到尖端的拍动,这与钙依赖性开关有关。我们的数据表明,产生近端/远端鞭毛不对称的机制可以控制波形起始和传播方向。

相似文献

1
Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7341-E7350. doi: 10.1073/pnas.1805827115. Epub 2018 Jul 20.
3
Effect of inhibition of axonemal dynein ATPases on the regulation of flagellar and ciliary waveforms in Leishmania parasites.
Mol Biochem Parasitol. 2018 Oct;225:27-37. doi: 10.1016/j.molbiopara.2018.08.002. Epub 2018 Aug 23.
5
Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei.
Mol Biochem Parasitol. 2011 Jan;175(1):68-75. doi: 10.1016/j.molbiopara.2010.09.005. Epub 2010 Oct 1.
6
The single flagellum of has a fixed polarisation of its asymmetric beat.
J Cell Sci. 2020 Oct 22;133(20):jcs246637. doi: 10.1242/jcs.246637.
7
Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution.
Mol Biol Evol. 2016 Dec;33(12):3249-3267. doi: 10.1093/molbev/msw213. Epub 2016 Oct 7.
10
Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules.
Cell Motil Cytoskeleton. 1997;36(1):68-75. doi: 10.1002/(SICI)1097-0169(1997)36:1<68::AID-CM6>3.0.CO;2-D.

引用本文的文献

1
Proteins with proximal-distal asymmetries in axoneme localisation control flagellum beat frequency.
Nat Commun. 2025 Apr 4;16(1):3237. doi: 10.1038/s41467-025-58405-1.
2
Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms.
Science. 2025 Mar 14;387(6739):eadr3314. doi: 10.1126/science.adr3314.
3
Evolutionary adaptations of doublet microtubules in trypanosomatid parasites.
Science. 2025 Mar 14;387(6739):eadr5507. doi: 10.1126/science.adr5507.
4
Cytoplasmic preassembly of the flagellar outer dynein arm complex in .
Mol Biol Cell. 2024 Sep 1;35(9):br16. doi: 10.1091/mbc.E24-06-0263. Epub 2024 Jul 18.
5
LRRC56 is an IFT cargo required for assembly of the distal dynein docking complex in .
Mol Biol Cell. 2024 Aug 1;35(8):ar106. doi: 10.1091/mbc.E23-11-0425. Epub 2024 Jun 12.
6
Intraflagellar transport speed is sensitive to genetic and mechanical perturbations to flagellar beating.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202401154. Epub 2024 Jun 3.
7
Assembly of FAP93 at the proximal axoneme in Chlamydomonas cilia.
Cytoskeleton (Hoboken). 2024 Nov;81(11):539-555. doi: 10.1002/cm.21818. Epub 2024 Jan 15.
8
FAP106 is an interaction hub for assembling microtubule inner proteins at the cilium inner junction.
Nat Commun. 2023 Aug 26;14(1):5225. doi: 10.1038/s41467-023-40230-z.
9
Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei.
Nat Microbiol. 2023 Mar;8(3):533-547. doi: 10.1038/s41564-022-01295-6. Epub 2023 Feb 20.
10
Light chain 2 is a Tctex-type related axonemal dynein light chain that regulates directional ciliary motility in Trypanosoma brucei.
PLoS Pathog. 2022 Sep 26;18(9):e1009984. doi: 10.1371/journal.ppat.1009984. eCollection 2022 Sep.

本文引用的文献

1
Flagellar incorporation of proteins follows at least two different routes in trypanosomes.
Biol Cell. 2018 Feb;110(2):33-47. doi: 10.1111/boc.201700052. Epub 2017 Dec 11.
2
Role of calmodulin and calcineurin in regulating flagellar motility and wave polarity in Leishmania.
Parasitol Res. 2017 Nov;116(11):3221-3228. doi: 10.1007/s00436-017-5608-6. Epub 2017 Sep 7.
3
A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids.
R Soc Open Sci. 2017 May 3;4(5):170095. doi: 10.1098/rsos.170095. eCollection 2017 May.
4
Inverse relationship of Ca-dependent flagellar response between animal sperm and prasinophyte algae.
J Plant Res. 2017 May;130(3):465-473. doi: 10.1007/s10265-017-0931-7. Epub 2017 Apr 19.
5
Use of chiral cell shape to ensure highly directional swimming in trypanosomes.
PLoS Comput Biol. 2017 Jan 31;13(1):e1005353. doi: 10.1371/journal.pcbi.1005353. eCollection 2017 Jan.
6
EuPathDB: the eukaryotic pathogen genomics database resource.
Nucleic Acids Res. 2017 Jan 4;45(D1):D581-D591. doi: 10.1093/nar/gkw1105. Epub 2016 Nov 29.
7
TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource.
Trends Parasitol. 2017 Feb;33(2):80-82. doi: 10.1016/j.pt.2016.10.009. Epub 2016 Nov 15.
9
Cilium transition zone proteome reveals compartmentalization and differential dynamics of ciliopathy complexes.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5135-43. doi: 10.1073/pnas.1604258113. Epub 2016 Aug 12.
10
Intraflagellar transport is required for the maintenance of the trypanosome flagellum composition but not its length.
J Cell Sci. 2016 Aug 1;129(15):3026-41. doi: 10.1242/jcs.188227. Epub 2016 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验