Suppr超能文献

噬菌体合作抑制 CRISPR-Cas3 和 Cas9 免疫。

Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.

机构信息

Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.

Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.

出版信息

Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.

Abstract

Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.

摘要

细菌利用 CRISPR-Cas 适应性免疫系统来抵御噬菌体(phages)的侵害,而有些噬菌体则会产生抗 CRISPR(Acr)蛋白来抑制免疫功能。尽管我们对一些 Acr 蛋白的机制和结构有了深入的了解,但噬菌体在感染过程中是如何部署和利用这些蛋白的仍不清楚。在这里,我们发现,当面临 CRISPR-Cas 免疫时,Acr 的产生并不能保证噬菌体的复制,相反,只有当噬菌体数量下降到一个临界阈值以下时,感染才会失败。只有当多个噬菌体基因组向单个细胞贡献足够剂量的 Acr 时,感染才能成功。未能复制的噬菌体基因组产生的 Acr 蛋白会使细胞免疫抑制,这使细胞更容易被种群中的其他噬菌体感染。这种用于 CRISPR-Cas 抑制的利他机制表明,病毒之间存在合作,这种合作也可能在其他宿主-寄生虫相互作用中表现出来。

相似文献

1
Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.
2
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.
Cell. 2018 Aug 9;174(4):908-916.e12. doi: 10.1016/j.cell.2018.05.058. Epub 2018 Jul 19.
3
Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors.
Cell Host Microbe. 2021 May 12;29(5):704-714. doi: 10.1016/j.chom.2020.12.007. Epub 2021 Jan 13.
4
Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
Cell Host Microbe. 2020 Feb 12;27(2):189-198.e6. doi: 10.1016/j.chom.2019.12.004. Epub 2019 Dec 31.
5
A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases.
Nature. 2020 Jan;577(7789):244-248. doi: 10.1038/s41586-019-1786-y. Epub 2019 Dec 9.
7
Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa.
Nucleic Acids Res. 2021 Feb 26;49(4):2114-2125. doi: 10.1093/nar/gkab006.
8
Bacterial biodiversity drives the evolution of CRISPR-based phage resistance.
Nature. 2019 Oct;574(7779):549-552. doi: 10.1038/s41586-019-1662-9. Epub 2019 Oct 23.
9
Structural and mechanistic insights into the CRISPR inhibition of AcrIF7.
Nucleic Acids Res. 2020 Sep 25;48(17):9959-9968. doi: 10.1093/nar/gkaa690.
10
Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs.
FEMS Microbiol Lett. 2019 May 1;366(9). doi: 10.1093/femsle/fnz098.

引用本文的文献

3
Pseudomonas aeruginosa as a model bacterium in antiphage defense research.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf014.
5
Molecular basis of the phosphorothioation-sensing antiphage defense system IscS-DndBCDE-DndI.
Nucleic Acids Res. 2024 Dec 11;52(22):13594-13604. doi: 10.1093/nar/gkae1133.
6
AcrIF11 is a potent CRISPR-specific ADP-ribosyltransferase encoded by phage and plasmid.
bioRxiv. 2024 Aug 26:2024.08.26.609590. doi: 10.1101/2024.08.26.609590.
7
Structural basis of Cas3 activation in type I-C CRISPR-Cas system.
Nucleic Acids Res. 2024 Sep 23;52(17):10563-10574. doi: 10.1093/nar/gkae723.
8
Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance.
Heliyon. 2024 Jul 16;10(14):e34692. doi: 10.1016/j.heliyon.2024.e34692. eCollection 2024 Jul 30.
9
Coinfecting phages impede each other's entry into the cell.
Curr Biol. 2024 Jul 8;34(13):2841-2853.e18. doi: 10.1016/j.cub.2024.05.032. Epub 2024 Jun 14.
10
Regulatory sequence-based discovery of anti-defense genes in archaeal viruses.
Nat Commun. 2024 May 2;15(1):3699. doi: 10.1038/s41467-024-48074-x.

本文引用的文献

1
Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity.
Nat Microbiol. 2018 Apr;3(4):461-469. doi: 10.1038/s41564-018-0120-z. Epub 2018 Mar 5.
2
Anti-CRISPR: discovery, mechanism and function.
Nat Rev Microbiol. 2018 Jan;16(1):12-17. doi: 10.1038/nrmicro.2017.120. Epub 2017 Oct 24.
3
4
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.
5
An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
Nat Microbiol. 2017 Oct;2(10):1374-1380. doi: 10.1038/s41564-017-0004-7. Epub 2017 Aug 7.
6
The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.
Annu Rev Virol. 2017 Sep 29;4(1):37-59. doi: 10.1146/annurev-virology-101416-041616. Epub 2017 Jul 27.
7
Disabling Cas9 by an anti-CRISPR DNA mimic.
Sci Adv. 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.
8
Evolutionary Genomics of Defense Systems in Archaea and Bacteria.
Annu Rev Microbiol. 2017 Sep 8;71:233-261. doi: 10.1146/annurev-micro-090816-093830. Epub 2017 Jun 28.
9
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验