Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.
Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.
细菌利用 CRISPR-Cas 适应性免疫系统来抵御噬菌体(phages)的侵害,而有些噬菌体则会产生抗 CRISPR(Acr)蛋白来抑制免疫功能。尽管我们对一些 Acr 蛋白的机制和结构有了深入的了解,但噬菌体在感染过程中是如何部署和利用这些蛋白的仍不清楚。在这里,我们发现,当面临 CRISPR-Cas 免疫时,Acr 的产生并不能保证噬菌体的复制,相反,只有当噬菌体数量下降到一个临界阈值以下时,感染才会失败。只有当多个噬菌体基因组向单个细胞贡献足够剂量的 Acr 时,感染才能成功。未能复制的噬菌体基因组产生的 Acr 蛋白会使细胞免疫抑制,这使细胞更容易被种群中的其他噬菌体感染。这种用于 CRISPR-Cas 抑制的利他机制表明,病毒之间存在合作,这种合作也可能在其他宿主-寄生虫相互作用中表现出来。