Suppr超能文献

药物代谢组学揭示伊立替康在癌症患者中的作用机制。

Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients.

机构信息

Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.

Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.

出版信息

J Clin Pharmacol. 2019 Jan;59(1):20-34. doi: 10.1002/jcph.1275. Epub 2018 Jul 27.

Abstract

The purpose of this study was to identify early circulating metabolite changes implicated in the mechanism of action of irinotecan, a DNA topoisomerase I inhibitor, in cancer patients. A liquid chromatography-tandem mass spectrometry-based targeted metabolomic platform capable of measuring 254 endogenous metabolites was applied to profile circulating metabolites in plasma samples collected pre- and post-irinotecan treatment from 13 cancer patients. To gain further mechanistic insights, metabolic profiling was also performed for the culture medium of human primary hepatocytes (HepatoCells) and 2 cancer cell lines on exposure to SN-38 (an active metabolite of irinotecan). Intracellular reactive oxygen species (ROS) was detected by dihydroethidium assay. Irinotecan induced a global metabolic change in patient plasma, as represented by elevations of circulating purine/pyrimidine nucleobases, acylcarnitines, and specific amino acid metabolites. The plasma metabolic signature was well replicated in HepatoCells medium on SN-38 exposure, whereas in cancer cell medium SN-38 induced accumulation of pyrimidine/purine nucleosides and nucleobases while having no impact on acylcarnitines and amino acid metabolites. SN-38 induced ROS in HepatoCells, but not in cancer cells. Distinct metabolite signatures of SN-38 exposure in HepatoCells medium and cancer cell medium revealed different mechanisms of drug action on hepatocytes and cancer cells. Elevations in circulating purine/pyrimidine nucleobases may stem from nucleotide degradation following irinotecan-induced DNA double-strand breaks. Accumulations of circulating acylcarnitines and specific amino acid metabolites may reflect, at least in part, irinotecan-induced mitochondrial dysfunction and oxidative stress in the liver. The plasma metabolic signature of irinotecan exposure provides early insights into irinotecan mechanism of action in patients.

摘要

本研究旨在鉴定伊立替康(一种 DNA 拓扑异构酶 I 抑制剂)作用机制中涉及的早期循环代谢物变化,伊立替康在癌症患者中。应用基于液相色谱-串联质谱的靶向代谢组学平台,能够测量 254 种内源性代谢物,对 13 名癌症患者伊立替康治疗前后的血浆样本中的循环代谢物进行了分析。为了获得进一步的机制见解,还对人原代肝细胞(HepatoCells)和 2 种癌细胞系在暴露于 SN-38(伊立替康的活性代谢物)时的培养基进行了代谢谱分析。通过二氢乙啶测定法检测细胞内活性氧(ROS)。伊立替康诱导患者血浆发生全面代谢变化,表现为循环嘌呤/嘧啶核苷、酰基辅酶和特定氨基酸代谢物的升高。SN-38 暴露于 HepatoCells 培养基中的血浆代谢特征得到了很好的复制,而在癌细胞培养基中,SN-38 诱导嘧啶/嘌呤核苷和核苷的积累,而对酰基辅酶和氨基酸代谢物没有影响。SN-38 诱导 HepatoCells 产生 ROS,但对癌细胞没有影响。HepatoCells 培养基和癌细胞培养基中 SN-38 暴露的不同代谢物特征揭示了药物对肝细胞和癌细胞作用的不同机制。循环嘌呤/嘧啶核苷的升高可能源于伊立替康诱导的 DNA 双链断裂后核苷酸的降解。循环酰基辅酶和特定氨基酸代谢物的积累可能至少部分反映了伊立替康诱导的肝脏线粒体功能障碍和氧化应激。伊立替康暴露的血浆代谢特征为伊立替康在患者中的作用机制提供了早期见解。

相似文献

1
Pharmacometabolomics Reveals Irinotecan Mechanism of Action in Cancer Patients.
J Clin Pharmacol. 2019 Jan;59(1):20-34. doi: 10.1002/jcph.1275. Epub 2018 Jul 27.
4
Clinical pharmacokinetics of irinotecan.
Clin Pharmacokinet. 1997 Oct;33(4):245-59. doi: 10.2165/00003088-199733040-00001.
5
Assessment of exposure risk of irinotecan and its active metabolite, SN-38, through perspiration during chemotherapy.
J Oncol Pharm Pract. 2019 Jun;25(4):865-868. doi: 10.1177/1078155218769136. Epub 2018 Apr 13.
8
Sensitization of colorectal cancer to irinotecan therapy by PARP inhibitor rucaparib.
Invest New Drugs. 2019 Oct;37(5):948-960. doi: 10.1007/s10637-018-00717-9. Epub 2019 Jan 5.
9
Impact of obesity on accumulation of the toxic irinotecan metabolite, SN-38, in mice.
Life Sci. 2015 Oct 15;139:132-8. doi: 10.1016/j.lfs.2015.08.017. Epub 2015 Sep 1.
10
Irinotecan-Still an Important Player in Cancer Chemotherapy: A Comprehensive Overview.
Int J Mol Sci. 2020 Jul 12;21(14):4919. doi: 10.3390/ijms21144919.

引用本文的文献

3
Investigating the Impact of SN-38 on Mouse Brain Metabolism Based on Metabolomics.
Drug Des Devel Ther. 2024 Jun 20;18:2435-2447. doi: 10.2147/DDDT.S457698. eCollection 2024.
4
Individual Irinotecan Therapy Under the Guidance of Pre-Treated * Genotyping in Gastric Cancer.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241236658. doi: 10.1177/15330338241236658.
6
Enhancing anti-AML activity of venetoclax by isoflavone ME-344 through suppression of OXPHOS and/or purine biosynthesis in vitro.
Biochem Pharmacol. 2024 Feb;220:115981. doi: 10.1016/j.bcp.2023.115981. Epub 2023 Dec 10.
7
Colorectal Cancer: Disease Process, Current Treatment Options, and Future Perspectives.
Pharmaceutics. 2023 Nov 12;15(11):2620. doi: 10.3390/pharmaceutics15112620.
8
Pharmacokinetics in Pharmacometabolomics: Towards Personalized Medication.
Pharmaceuticals (Basel). 2023 Nov 7;16(11):1568. doi: 10.3390/ph16111568.
9
Automated Identification of Modified Nucleosides during HRAM-LC-MS/MS using a Metabolomics ID Workflow with Neutral Loss Detection.
J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2785-2792. doi: 10.1021/jasms.3c00298. Epub 2023 Nov 10.
10
Recent Analytical Advances for Decoding Metabolic Reprogramming in Lung Cancer.
Metabolites. 2023 Sep 26;13(10):1037. doi: 10.3390/metabo13101037.

本文引用的文献

1
Propofol Related Infusion Syndrome: Ultrastructural Evidence for a Mitochondrial Disorder.
Crit Care Med. 2018 Jan;46(1):e91-e94. doi: 10.1097/CCM.0000000000002802.
2
Mitochondrial respiratory gene expression is suppressed in many cancers.
Elife. 2017 Jan 18;6:e21592. doi: 10.7554/eLife.21592.
3
Mitochondrial DNA copy number variation across human cancers.
Elife. 2016 Feb 22;5:e10769. doi: 10.7554/eLife.10769.
5
Mechanistic review of drug-induced steatohepatitis.
Toxicol Appl Pharmacol. 2015 Nov 15;289(1):40-7. doi: 10.1016/j.taap.2015.08.022. Epub 2015 Sep 5.
6
Effect of rosiglitazone on asymmetric dimethylarginine metabolism in thioacetamide-induced acute liver injury.
Pathophysiology. 2015 Sep;22(3):153-7. doi: 10.1016/j.pathophys.2015.06.003. Epub 2015 Jul 17.
8
Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology.
Clin Pharmacol Ther. 2014 Feb;95(2):154-67. doi: 10.1038/clpt.2013.217. Epub 2013 Nov 5.
9
Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans.
Arch Toxicol. 2014 Feb;88(2):391-401. doi: 10.1007/s00204-013-1118-1. Epub 2013 Aug 25.
10
Purine pathway implicated in mechanism of resistance to aspirin therapy: pharmacometabolomics-informed pharmacogenomics.
Clin Pharmacol Ther. 2013 Oct;94(4):525-32. doi: 10.1038/clpt.2013.119. Epub 2013 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验