Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany.
Nucleic Acids Res. 2018 Jul 27;46(13):6893-6908. doi: 10.1093/nar/gky542.
The interaction of the eukaryotic initiation factor 4G (eIF4G) with the cap-binding protein eIF4E initiates cap-dependent translation and is regulated by the 4E-binding proteins (4E-BPs), which compete with eIF4G to repress translation. Metazoan eIF4G and 4E-BPs interact with eIF4E via canonical and non-canonical motifs that bind to the dorsal and lateral surface of eIF4E in a bipartite recognition mode. However, previous studies pointed to mechanistic differences in how fungi and metazoans regulate protein synthesis. We present crystal structures of the yeast eIF4E bound to two yeast 4E-BPs, p20 and Eap1p, as well as crystal structures of a fungal eIF4E-eIF4G complex. We demonstrate that the core principles of molecular recognition of eIF4E are in fact highly conserved among translational activators and repressors in eukaryotes. Finally, we reveal that highly specialized structural motifs do exist and serve to modulate the affinity of protein-protein interactions that regulate cap-dependent translation initiation in fungi.
真核起始因子 4G (eIF4G) 与帽结合蛋白 eIF4E 的相互作用启动帽依赖型翻译,并受 4E 结合蛋白 (4E-BPs) 的调节,后者通过与 eIF4G 竞争来抑制翻译。后生动物 eIF4G 和 4E-BPs 通过与 eIF4E 结合的经典和非经典基序相互作用,以二部分识别模式与 eIF4E 的背侧和侧表面结合。然而,以前的研究指出真菌和后生动物在调节蛋白质合成方面存在机制上的差异。我们展示了酵母 eIF4E 与两种酵母 4E-BPs,p20 和 Eap1p 的晶体结构,以及真菌 eIF4E-eIF4G 复合物的晶体结构。我们证明,分子识别的核心原则实际上在真核生物的翻译激活剂和抑制剂中高度保守。最后,我们揭示了高度专门的结构基序确实存在,并调节调节真菌中帽依赖型翻译起始的蛋白质-蛋白质相互作用的亲和力。