Suppr超能文献

人体生物监测参考值:识别人体中污染物异常高暴露的方法之间的差异和相似之处。

Human biomonitoring reference values: Differences and similarities between approaches for identifying unusually high exposure of pollutants in humans.

机构信息

German Environment Agency (Umweltbundesamt), Germany.

German Environment Agency (Umweltbundesamt), Germany.

出版信息

Int J Hyg Environ Health. 2019 Jan;222(1):30-33. doi: 10.1016/j.ijheh.2018.08.002. Epub 2018 Aug 23.

Abstract

In exposure and risk assessment, the indication of unusually high exposure levels in humans to chemicals has been considered as an important objective for decades. To realize this objective, reference values (RV) need to be derived. However, while there is a tendency towards using the 95th percentile as a basis for deriving these reference values there is still no consensus. Moreover, side approaches have evolved including deriving RVs based on other percentiles, reporting multiple RVs or only reporting percentiles. The purpose of this article is to give an overview of the current literature, to point out differences and similarities between existing approaches, and to highlight important criteria for the derivation of RVs. We observe the majority of studies to base RVs on the 95th percentile and its 95% confidence interval which can been justified by statistical paradigms, present arguments for a single defined reference value, and discuss characteristics which call for more consistency. To conclude, our overview provides a first step towards a more homogenous and standardized derivation procedure to identify unusually high exposures in exposure science.

摘要

在暴露和风险评估中,几十年来,人类接触化学品的异常高水平一直被认为是一个重要的目标。为了实现这一目标,需要推导出参考值(RV)。然而,虽然有使用第 95 百分位数作为推导这些参考值的基础的趋势,但仍未达成共识。此外,还出现了一些旁支方法,包括基于其他百分位数推导 RV,报告多个 RV 或仅报告百分位数。本文的目的是概述当前的文献,指出现有方法之间的差异和相似之处,并强调推导 RV 的重要标准。我们观察到大多数研究都基于第 95 百分位数及其 95%置信区间来推导 RV,这可以通过统计学范式来证明,提出了单一确定参考值的论据,并讨论了需要更多一致性的特征。总之,我们的综述为在暴露科学中识别异常高暴露提供了迈向更同质和标准化推导程序的第一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验