Suppr超能文献

衣壳-CPSF6 相互作用使核 HIV-1 易位到病毒 DNA 整合的部位。

Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration.

机构信息

Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.

出版信息

Cell Host Microbe. 2018 Sep 12;24(3):392-404.e8. doi: 10.1016/j.chom.2018.08.002. Epub 2018 Aug 30.

Abstract

HIV-1 integration into the host genome favors actively transcribed genes. Prior work indicated that the nuclear periphery provides the architectural basis for integration site selection, with viral capsid-binding host cofactor CPSF6 and viral integrase-binding cofactor LEDGF/p75 contributing to selection of individual sites. Here, by investigating the early phase of infection, we determine that HIV-1 traffics throughout the nucleus for integration. CPSF6-capsid interactions allow the virus to bypass peripheral heterochromatin and penetrate the nuclear structure for integration. Loss of interaction with CPSF6 dramatically alters virus localization toward the nuclear periphery and integration into transcriptionally repressed lamina-associated heterochromatin, while loss of LEDGF/p75 does not significantly affect intranuclear HIV-1 localization. Thus, CPSF6 serves as a master regulator of HIV-1 intranuclear localization by trafficking viral preintegration complexes away from heterochromatin at the periphery toward gene-dense chromosomal regions within the nuclear interior.

摘要

HIV-1 整合到宿主基因组中有利于活跃转录的基因。先前的研究表明,核周为整合位点选择提供了结构基础,病毒衣壳结合宿主辅助因子 CPSF6 和病毒整合酶结合辅助因子 LEDGF/p75 有助于选择个别位点。在这里,通过研究感染的早期阶段,我们确定 HIV-1 在整个核内进行整合。CPSF6-衣壳相互作用使病毒能够绕过周边异染色质并穿透核结构进行整合。与 CPSF6 相互作用的丧失会极大地改变病毒向核周的定位和整合到转录受抑制的核被膜相关异染色质中,而 LEDGF/p75 的丧失不会显著影响 HIV-1 在核内的定位。因此,CPSF6 通过将病毒前整合复合物从周边异染色质运送到核内部基因密集的染色体区域,从而作为 HIV-1 核内定位的主调节剂。

相似文献

1
Capsid-CPSF6 Interaction Licenses Nuclear HIV-1 Trafficking to Sites of Viral DNA Integration.
Cell Host Microbe. 2018 Sep 12;24(3):392-404.e8. doi: 10.1016/j.chom.2018.08.002. Epub 2018 Aug 30.
3
CPSF6 promotes HIV-1 preintegration complex function.
J Virol. 2025 May 20;99(5):e0049025. doi: 10.1128/jvi.00490-25. Epub 2025 Apr 9.
4
A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin.
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E1054-63. doi: 10.1073/pnas.1524213113. Epub 2016 Feb 8.
6
Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration.
mBio. 2025 Apr 9;16(4):e0016925. doi: 10.1128/mbio.00169-25. Epub 2025 Feb 27.
8
Truncated CPSF6 Forms Higher-Order Complexes That Bind and Disrupt HIV-1 Capsid.
J Virol. 2018 Jun 13;92(13). doi: 10.1128/JVI.00368-18. Print 2018 Jul 1.
9
The HIV-1 capsid-binding host factor CPSF6 is post-transcriptionally regulated by the cellular microRNA miR-125b.
J Biol Chem. 2020 Apr 10;295(15):5081-5094. doi: 10.1074/jbc.RA119.010534. Epub 2020 Mar 9.

引用本文的文献

1
Time-Resolved Fluorescence Imaging and Correlative Cryo-Electron Tomography to Study Structural Changes of the HIV-1 Capsid.
ACS Nano. 2025 Sep 2;19(34):30902-30918. doi: 10.1021/acsnano.5c06724. Epub 2025 Aug 22.
5
The role of chromatin in retroviral preintegration complex function.
J Biol Chem. 2025 Jul 3;301(8):110440. doi: 10.1016/j.jbc.2025.110440.
6
How HIV-1 Uses the Metabolite Inositol Hexakisphosphate to Build Its Capsid.
Viruses. 2025 May 9;17(5):689. doi: 10.3390/v17050689.
10
Structural and mechanistic bases for resistance of the M66I capsid variant to lenacapavir.
mBio. 2025 May 14;16(5):e0361324. doi: 10.1128/mbio.03613-24. Epub 2025 Apr 15.

本文引用的文献

2
Multiplex single-cell visualization of nucleic acids and protein during HIV infection.
Nat Commun. 2017 Dec 1;8(1):1882. doi: 10.1038/s41467-017-01693-z.
3
Nuclear speckles: molecular organization, biological function and role in disease.
Nucleic Acids Res. 2017 Oct 13;45(18):10350-10368. doi: 10.1093/nar/gkx759.
4
Dynamics and regulation of nuclear import and nuclear movements of HIV-1 complexes.
PLoS Pathog. 2017 Aug 21;13(8):e1006570. doi: 10.1371/journal.ppat.1006570. eCollection 2017 Aug.
5
Three-dimensional positioning and structure of chromosomes in a human prophase nucleus.
Sci Adv. 2017 Jul 21;3(7):e1602231. doi: 10.1126/sciadv.1602231. eCollection 2017 Jul.
6
Imaging HIV-1 Genomic DNA from Entry through Productive Infection.
J Virol. 2017 Apr 13;91(9). doi: 10.1128/JVI.00034-17. Print 2017 May 1.
7
Nuclear landscape of HIV-1 infection and integration.
Nat Rev Microbiol. 2017 Feb;15(2):69-82. doi: 10.1038/nrmicro.2016.162. Epub 2016 Dec 12.
8
Nucleoporin-mediated regulation of cell identity genes.
Genes Dev. 2016 Oct 15;30(20):2253-2258. doi: 10.1101/gad.287417.116. Epub 2016 Nov 2.
10
Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.
Nat Protoc. 2016 Sep;11(9):1650-67. doi: 10.1038/nprot.2016.095. Epub 2016 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验