Suppr超能文献

在培养皿中衰老:iPSC 衍生和直接诱导神经元用于研究大脑衰老和与年龄相关的神经退行性疾病。

Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases.

机构信息

Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA; email:

Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology, and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria.

出版信息

Annu Rev Genet. 2018 Nov 23;52:271-293. doi: 10.1146/annurev-genet-120417-031534. Epub 2018 Sep 12.

Abstract

Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.

摘要

与年龄相关的神经退行性疾病是生物医学研究中的一个巨大挑战,因为我们仍在努力理解衰老过程与疾病表现之间的关系。老年人的各种病变并非直接由基因突变、毒素或感染因子引起,而是主要由生物衰老的多种表现所驱动。因此,需要新的概念来生成合适的模型系统,以研究神经系统中的人类衰老,这些概念超越了转基因和药物诱导模型。尽管获取可行的人脑标本受到限制,并且由于与重编程相关的细胞年轻化,诱导多能干细胞模型也存在局限性,但将体细胞直接转化为诱导神经元可以产生捕获衰老许多方面的人类神经元。在这里,我们回顾了使用人类细胞重编程模型探索与年龄相关的神经退行性疾病的进展,并讨论了该领域的一般概念、前景和局限性。

相似文献

1
Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases.
Annu Rev Genet. 2018 Nov 23;52:271-293. doi: 10.1146/annurev-genet-120417-031534. Epub 2018 Sep 12.
2
Human neurons to model aging: A dish best served old.
Drug Discov Today Dis Models. 2018 Spring;27:43-49. doi: 10.1016/j.ddmod.2019.01.001. Epub 2019 Feb 12.
3
Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
Brain Res. 2016 May 1;1638(Pt A):30-41. doi: 10.1016/j.brainres.2015.09.023. Epub 2015 Sep 28.
4
Next-generation disease modeling with direct conversion: a new path to old neurons.
FEBS Lett. 2019 Dec;593(23):3316-3337. doi: 10.1002/1873-3468.13678. Epub 2019 Nov 26.
5
Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures.
Front Aging Neurosci. 2022 Dec 20;14:1069482. doi: 10.3389/fnagi.2022.1069482. eCollection 2022.
7
Cell reprogramming: Therapeutic potential and the promise of rejuvenation for the aging brain.
Ageing Res Rev. 2017 Nov;40:168-181. doi: 10.1016/j.arr.2017.09.002. Epub 2017 Sep 10.
8
Induced pluripotent stem cell-based modeling of neurodegenerative diseases: a focus on autophagy.
J Mol Med (Berl). 2017 Jul;95(7):705-718. doi: 10.1007/s00109-017-1533-5. Epub 2017 Jun 7.
10
The application of in vitro-derived human neurons in neurodegenerative disease modeling.
J Neurosci Res. 2021 Jan;99(1):124-140. doi: 10.1002/jnr.24615. Epub 2020 Mar 13.

引用本文的文献

1
RNA triggers chronic stress during neuronal aging.
bioRxiv. 2025 Aug 5:2025.08.04.668575. doi: 10.1101/2025.08.04.668575.
2
The complex web of membrane contact sites in brain aging and neurodegeneration.
Cell Mol Life Sci. 2025 Aug 8;82(1):301. doi: 10.1007/s00018-025-05830-6.
4
Navigating the neuronal recycling bin: Another look at huntingtin in coordinating autophagy.
Autophagy Rep. 2025 Jun 2;4(1):2472450. doi: 10.1080/27694127.2025.2472450. eCollection 2025.
5
Neuronal aging causes mislocalization of splicing proteins and unchecked cellular stress.
Nat Neurosci. 2025 Jun;28(6):1174-1184. doi: 10.1038/s41593-025-01952-z. Epub 2025 Jun 2.
6
7
The potential of brain organoids in addressing the heterogeneity of synucleinopathies.
Cell Mol Life Sci. 2025 Apr 28;82(1):188. doi: 10.1007/s00018-025-05686-w.
8
Astrocytic RNA editing regulates the host immune response to alpha-synuclein.
Sci Adv. 2025 Apr 11;11(15):eadp8504. doi: 10.1126/sciadv.adp8504.
10
Ex vivo functional whole organ in biomedical research: a review.
J Artif Organs. 2025 Jun;28(2):131-145. doi: 10.1007/s10047-024-01478-4. Epub 2024 Nov 27.

本文引用的文献

1
Mitochondrial Aging Defects Emerge in Directly Reprogrammed Human Neurons due to Their Metabolic Profile.
Cell Rep. 2018 May 29;23(9):2550-2558. doi: 10.1016/j.celrep.2018.04.105.
2
Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes.
Nat Neurosci. 2018 Mar;21(3):341-352. doi: 10.1038/s41593-018-0075-7. Epub 2018 Feb 5.
3
Aging and neurodegeneration are associated with increased mutations in single human neurons.
Science. 2018 Feb 2;359(6375):555-559. doi: 10.1126/science.aao4426. Epub 2017 Dec 7.
4
Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human Motor Neurons.
Front Mol Neurosci. 2017 Nov 2;10:359. doi: 10.3389/fnmol.2017.00359. eCollection 2017.
5
7
Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.
Cell. 2017 Oct 5;171(2):321-330.e14. doi: 10.1016/j.cell.2017.09.004. Epub 2017 Sep 28.
8
Rapid Chromatin Switch in the Direct Reprogramming of Fibroblasts to Neurons.
Cell Rep. 2017 Sep 26;20(13):3236-3247. doi: 10.1016/j.celrep.2017.09.011.
9
Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells.
Cell Stem Cell. 2017 Nov 2;21(5):618-634.e7. doi: 10.1016/j.stem.2017.08.012. Epub 2017 Sep 14.
10
NAD in Aging: Molecular Mechanisms and Translational Implications.
Trends Mol Med. 2017 Oct;23(10):899-916. doi: 10.1016/j.molmed.2017.08.001. Epub 2017 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验