Suppr超能文献

睡眠慢波和纺锤波相关的皮质电路活动。

Cortical circuit activity underlying sleep slow oscillations and spindles.

机构信息

Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany;

Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076 Tübingen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9220-E9229. doi: 10.1073/pnas.1805517115. Epub 2018 Sep 12.

Abstract

Slow oscillations and sleep spindles are hallmarks of the EEG during slow-wave sleep (SWS). Both oscillatory events, especially when co-occurring in the constellation of spindles nesting in the slow oscillation upstate, are considered to support memory formation and underlying synaptic plasticity. The regulatory mechanisms of this function at the circuit level are poorly understood. Here, using two-photon imaging in mice, we relate EEG-recorded slow oscillations and spindles to calcium signals recorded from the soma of cortical putative pyramidal-like (Pyr) cells and neighboring parvalbumin-positive interneurons (PV-Ins) or somatostatin-positive interneurons (SOM-Ins). Pyr calcium activity was increased more than threefold when spindles co-occurred with slow oscillation upstates compared with slow oscillations or spindles occurring in isolation. Independent of whether or not a spindle was nested in the slow oscillation upstate, the slow oscillation downstate was preceded by enhanced calcium signal in SOM-Ins that vanished during the upstate, whereas spindles were associated with strongly increased PV-In calcium activity. Additional wide-field calcium imaging of Pyr cells confirmed the enhanced calcium activity and its widespread topography associated with spindles nested in slow oscillation upstates. In conclusion, when spindles are nested in slow oscillation upstates, maximum Pyr activity appears to concur with strong perisomatic inhibition of Pyr cells via PV-Ins and low dendritic inhibition via SOM-Ins (i.e., conditions that might optimize synaptic plasticity within local cortical circuits).

摘要

慢波振荡和睡眠纺锤波是慢波睡眠(SWS)期间 EEG 的标志。这两种振荡事件,尤其是当它们同时出现在慢振荡上状态的纺锤波丛中时,被认为支持记忆形成和潜在的突触可塑性。这种功能在电路水平上的调节机制还了解甚少。在这里,我们使用双光子成像在小鼠中,将 EEG 记录的慢波和纺锤波与从皮质假定的锥体样(Pyr)细胞的胞体和邻近的 Parvalbumin 阳性中间神经元(PV-Ins)或 Somatostatin 阳性中间神经元(SOM-Ins)记录的钙信号相关联。与单独的慢波或纺锤波相比,当纺锤波与慢波上状态同时发生时,Pyr 钙活性增加了三倍以上。无论纺锤波是否嵌套在慢波上状态中,SOM-Ins 的钙信号在慢波下状态之前都会增强,而在慢波上状态期间会消失,而纺锤波则与强烈增加的 PV-In 钙活性相关。对 Pyr 细胞的额外宽场钙成像证实了与嵌套在慢波上状态中的纺锤波相关的增强钙活性及其广泛的拓扑结构。总之,当纺锤波嵌套在慢波上状态中时,最大的 Pyr 活性似乎与通过 PV-Ins 对 Pyr 细胞的强烈胞体抑制以及通过 SOM-Ins 的低树突抑制相一致(即可能优化局部皮质回路中的突触可塑性的条件)。

相似文献

1
Cortical circuit activity underlying sleep slow oscillations and spindles.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9220-E9229. doi: 10.1073/pnas.1805517115. Epub 2018 Sep 12.
2
Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
J Neurosci. 2021 May 12;41(19):4212-4222. doi: 10.1523/JNEUROSCI.1957-20.2021. Epub 2021 Apr 8.
4
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition.
Curr Biol. 2016 Oct 24;26(20):2739-2749. doi: 10.1016/j.cub.2016.08.035. Epub 2016 Sep 29.
5
Phase of Spontaneous Slow Oscillations during Sleep Influences Memory-Related Processing of Auditory Cues.
J Neurosci. 2016 Jan 27;36(4):1401-9. doi: 10.1523/JNEUROSCI.3175-15.2016.
8
Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
Neuroimage. 2021 Jan 1;224:117452. doi: 10.1016/j.neuroimage.2020.117452. Epub 2020 Oct 13.
9
Spindle activity phase-locked to sleep slow oscillations.
Neuroimage. 2016 Jul 1;134:607-616. doi: 10.1016/j.neuroimage.2016.04.031. Epub 2016 Apr 18.

引用本文的文献

1
Preoptic area influences sleep-related seizures in a genetic epilepsy mouse model.
Cereb Cortex. 2025 Jul 1;35(7). doi: 10.1093/cercor/bhaf187.
2
Cholinergic modulation of neural networks supports sequential and complementary roles for NREM and REM states in memory consolidation.
PLoS Comput Biol. 2025 Jun 17;21(6):e1013097. doi: 10.1371/journal.pcbi.1013097. eCollection 2025 Jun.
3
Human sleep spindles track experimentally excited brain circuits.
Sleep. 2025 Jul 11;48(7). doi: 10.1093/sleep/zsaf114.
5
REM refines and rescues memory representations: a new theory.
Sleep Adv. 2025 Jan 22;6(1):zpaf004. doi: 10.1093/sleepadvances/zpaf004. eCollection 2025.
9
Development of slow oscillation-spindle coupling from infancy to toddlerhood.
Sleep Adv. 2024 Nov 16;5(1):zpae084. doi: 10.1093/sleepadvances/zpae084. eCollection 2024.
10
Slow Oscillation-Spindle Coupling Predicts Sequence-Based Language Learning.
J Neurosci. 2025 Jan 15;45(3):e2193232024. doi: 10.1523/JNEUROSCI.2193-23.2024.

本文引用的文献

1
Plasticity during Sleep Is Linked to Specific Regulation of Cortical Circuit Activity.
Front Neural Circuits. 2017 Sep 15;11:65. doi: 10.3389/fncir.2017.00065. eCollection 2017.
2
Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.
Nat Commun. 2017 Sep 25;8(1):684. doi: 10.1038/s41467-017-00735-w.
3
Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.
J Neurosci. 2017 Sep 20;37(38):9132-9148. doi: 10.1523/JNEUROSCI.1303-17.2017. Epub 2017 Aug 16.
4
Thalamic Spindles Promote Memory Formation during Sleep through Triple Phase-Locking of Cortical, Thalamic, and Hippocampal Rhythms.
Neuron. 2017 Jul 19;95(2):424-435.e6. doi: 10.1016/j.neuron.2017.06.025. Epub 2017 Jul 6.
5
Deciphering Neural Codes of Memory during Sleep.
Trends Neurosci. 2017 May;40(5):260-275. doi: 10.1016/j.tins.2017.03.005. Epub 2017 Apr 5.
6
Homer1a drives homeostatic scaling-down of excitatory synapses during sleep.
Science. 2017 Feb 3;355(6324):511-515. doi: 10.1126/science.aai8355. Epub 2017 Feb 2.
7
Ultrastructural evidence for synaptic scaling across the wake/sleep cycle.
Science. 2017 Feb 3;355(6324):507-510. doi: 10.1126/science.aah5982.
8
A cortical-hippocampal-cortical loop of information processing during memory consolidation.
Nat Neurosci. 2017 Feb;20(2):251-259. doi: 10.1038/nn.4457. Epub 2016 Dec 12.
10
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition.
Curr Biol. 2016 Oct 24;26(20):2739-2749. doi: 10.1016/j.cub.2016.08.035. Epub 2016 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验