Suppr超能文献

量化糖尿病血流中的血小板靠边现象。

Quantifying Platelet Margination in Diabetic Blood Flow.

机构信息

Division of Applied Mathematics, Brown University, Providence, Rhode Island.

S. Lepida Biomedical Laboratory, Athens, Greece; Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.

出版信息

Biophys J. 2018 Oct 2;115(7):1371-1382. doi: 10.1016/j.bpj.2018.08.031. Epub 2018 Aug 30.

Abstract

Patients with type 2 diabetes mellitus (T2DM) develop thrombotic abnormalities strongly associated with cardiovascular diseases. In addition to the changes of numerous coagulation factors such as elevated levels of thrombin and fibrinogen, the abnormal rheological effects of red blood cells (RBCs) and platelets flowing in blood are crucial in platelet adhesion and thrombus formation in T2DM. An important process contributing to the latter is the platelet margination. We employ the dissipative particle dynamics method to seamlessly model cells, plasma, and vessel walls. We perform a systematic study on RBC and platelet transport in cylindrical vessels by considering different cell shapes, sizes, and RBC deformabilities in healthy and T2DM blood, as well as variable flowrates and hematocrit. In particular, we use cellular-level RBC and platelet models with parameters derived from patient-specific data and present a sensitivity study. We find T2DM RBCs, which are less deformable compared to normal RBCs, lower the transport of platelets toward the vessel walls, whereas platelets with higher mean volume (often observed in T2DM) lead to enhanced margination. Furthermore, increasing the flowrate or hematocrit enhances platelet margination. We also investigated the effect of platelet shape and observed a nonmonotonic variation with the highest near-wall concentration corresponding to platelets with a moderate aspect ratio of 0.38. We examine the role of white blood cells (WBCs), whose count is increased notably in T2DM patients. We find that WBC rolling or WBC adhesion tends to decrease platelet margination due to hydrodynamic effects. To the best of our knowledge, such simulations of blood including all blood cells have not been performed before, and our quantitative findings can help separate the effects of hydrodynamic interactions from adhesive interactions and potentially shed light on the associated pathological processes in T2DM such as increased inflammatory response, platelet activation and adhesion, and ultimately thrombus formation.

摘要

患有 2 型糖尿病(T2DM)的患者会出现强烈与心血管疾病相关的血栓形成异常。除了许多凝血因子(如凝血酶和纤维蛋白原水平升高)的变化外,血液中流动的红细胞(RBC)和血小板的异常流变学效应对于 T2DM 中血小板黏附和血栓形成至关重要。导致后者的一个重要过程是血小板靠边。我们采用耗散粒子动力学方法无缝模拟细胞、血浆和血管壁。通过考虑健康和 T2DM 血液中不同的细胞形状、大小和 RBC 变形性,以及不同的流速和血细胞比容,我们对圆柱形容器中的 RBC 和血小板输运进行了系统研究。特别是,我们使用来自患者特定数据的细胞水平 RBC 和血小板模型,并进行了敏感性研究。我们发现与正常 RBC 相比变形能力较低的 T2DM RBC 会降低血小板向血管壁的输送,而平均体积较高的血小板(常在 T2DM 中观察到)会导致靠边增强。此外,增加流速或血细胞比容会增强血小板靠边。我们还研究了血小板形状的影响,观察到与最高壁面浓度对应的非单调变化,对应于具有适度纵横比 0.38 的血小板。我们检查了白细胞(WBC)的作用,T2DM 患者的白细胞计数显著增加。我们发现由于流体动力学效应,WBC 滚动或 WBC 黏附会降低血小板靠边。据我们所知,以前没有进行过包括所有血细胞的血液模拟,我们的定量发现可以帮助将流体动力学相互作用的影响与黏附相互作用分开,并可能揭示 T2DM 相关的病理过程,如炎症反应增加、血小板激活和黏附,以及最终血栓形成。

相似文献

1
Quantifying Platelet Margination in Diabetic Blood Flow.
Biophys J. 2018 Oct 2;115(7):1371-1382. doi: 10.1016/j.bpj.2018.08.031. Epub 2018 Aug 30.
2
Quantifying Shear-induced Margination and Adhesion of Platelets in Microvascular Blood Flow.
J Mol Biol. 2023 Jan 15;435(1):167824. doi: 10.1016/j.jmb.2022.167824. Epub 2022 Sep 13.
3
The influence of red blood cell deformability on hematocrit profiles and platelet margination.
PLoS Comput Biol. 2020 Mar 12;16(3):e1007716. doi: 10.1371/journal.pcbi.1007716. eCollection 2020 Mar.
4
Determination of critical parameters in platelet margination.
Ann Biomed Eng. 2013 Feb;41(2):238-49. doi: 10.1007/s10439-012-0648-7. Epub 2012 Sep 11.
5
Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.
Ann Biomed Eng. 2008 Jun;36(6):905-20. doi: 10.1007/s10439-008-9478-z. Epub 2008 Mar 11.
6
7
Comparative rheology of the adhesion of platelets and leukocytes from flowing blood: why are platelets so small?
Am J Physiol Heart Circ Physiol. 2013 Jun 1;304(11):H1483-94. doi: 10.1152/ajpheart.00881.2012. Epub 2013 Apr 12.
8
Effect of fibrinogen on leukocyte margination and adhesion in postcapillary venules.
Microcirculation. 2004 Apr-May;11(3):295-306. doi: 10.1080/10739680490425994.
9
Finite platelet size could be responsible for platelet margination effect.
Biophys J. 2011 Oct 19;101(8):1835-43. doi: 10.1016/j.bpj.2011.08.031.
10
In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
Biophys J. 2015 May 19;108(10):2601-2608. doi: 10.1016/j.bpj.2015.04.013.

引用本文的文献

1
Machine learning enabled multiscale model for nanoparticle margination and physiology based pharmacokinetics.
Comput Chem Eng. 2025 Jul;198. doi: 10.1016/j.compchemeng.2025.109081. Epub 2025 Mar 9.
2
Red blood cell passage through deformable interendothelial slits in the spleen: Insights into splenic filtration and hemodynamics.
Comput Biol Med. 2024 Nov;182:109198. doi: 10.1016/j.compbiomed.2024.109198. Epub 2024 Sep 27.
3
The flow of anisotropic nanoparticles in solution and in blood.
Exploration (Beijing). 2023 Oct 10;3(6):20220075. doi: 10.1002/EXP.20220075. eCollection 2023 Dec.
4
A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease.
PLoS Comput Biol. 2023 Dec 13;19(12):e1011223. doi: 10.1371/journal.pcbi.1011223. eCollection 2023 Dec.
5
Blood component separation in straight microfluidic channels.
Biomicrofluidics. 2023 Oct 16;17(5):054106. doi: 10.1063/5.0176457. eCollection 2023 Sep.
7
Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19.
iScience. 2023 Jun 25;26(7):107202. doi: 10.1016/j.isci.2023.107202. eCollection 2023 Jul 21.
8
In silico and in vitro study of the adhesion dynamics of erythrophagocytosis in sickle cell disease.
Biophys J. 2023 Jun 20;122(12):2590-2604. doi: 10.1016/j.bpj.2023.05.022. Epub 2023 May 24.
9
Ophthalmic artery changes in type 2 diabetes with and without acute coronary syndrome.
J Transl Med. 2022 Nov 5;20(1):512. doi: 10.1186/s12967-022-03712-0.
10
Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19.
Biophys J. 2022 Sep 20;121(18):3309-3319. doi: 10.1016/j.bpj.2022.08.031. Epub 2022 Aug 27.

本文引用的文献

1
A Study of Platelet Indices in Type 2 Diabetes Mellitus Patients.
Indian J Hematol Blood Transfus. 2018 Jan;34(1):115-120. doi: 10.1007/s12288-017-0825-9. Epub 2017 May 8.
2
Presence of Rigid Red Blood Cells in Blood Flow Interferes with the Vascular Wall Adhesion of Leukocytes.
Langmuir. 2018 Feb 13;34(6):2363-2372. doi: 10.1021/acs.langmuir.7b03890. Epub 2018 Jan 31.
3
Margination and stretching of von Willebrand factor in the blood stream enable adhesion.
Sci Rep. 2017 Oct 27;7(1):14278. doi: 10.1038/s41598-017-14346-4.
4
Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
Biophys J. 2017 Jul 25;113(2):481-490. doi: 10.1016/j.bpj.2017.06.015.
6
Direct Tracking of Particles and Quantification of Margination in Blood Flow.
Biophys J. 2016 Oct 4;111(7):1487-1495. doi: 10.1016/j.bpj.2016.08.026.
7
Systems Analysis of Thrombus Formation.
Circ Res. 2016 Apr 29;118(9):1348-62. doi: 10.1161/CIRCRESAHA.115.306824.
8
9
Diabetes and cardiovascular disease: pathophysiology of a life-threatening epidemic.
Herz. 2016 May;41(3):184-92. doi: 10.1007/s00059-016-4414-8.
10
Effects of shear rate, confinement, and particle parameters on margination in blood flow.
Phys Rev E. 2016 Feb;93(2):023109. doi: 10.1103/PhysRevE.93.023109. Epub 2016 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验