Suppr超能文献

深度学习在高分辨率 CT 上对肺纤维化疾病的分类:一项病例队列研究。

Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study.

机构信息

Department of Radiology, King's College Hospital Foundation Trust, London, UK.

Department of Radiology, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy.

出版信息

Lancet Respir Med. 2018 Nov;6(11):837-845. doi: 10.1016/S2213-2600(18)30286-8. Epub 2018 Sep 16.

Abstract

BACKGROUND

Based on international diagnostic guidelines, high-resolution CT plays a central part in the diagnosis of fibrotic lung disease. In the correct clinical context, when high-resolution CT appearances are those of usual interstitial pneumonia, a diagnosis of idiopathic pulmonary fibrosis can be made without surgical lung biopsy. We investigated the use of a deep learning algorithm for provision of automated classification of fibrotic lung disease on high-resolution CT according to criteria specified in two international diagnostic guideline statements: the 2011 American Thoracic Society (ATS)/European Respiratory Society (ERS)/Japanese Respiratory Society (JRS)/Latin American Thoracic Association (ALAT) guidelines for diagnosis and management of idiopathic pulmonary fibrosis and the Fleischner Society diagnostic criteria for idiopathic pulmonary fibrosis.

METHODS

In this case-cohort study, for algorithm development and testing, a database of 1157 anonymised high-resolution CT scans showing evidence of diffuse fibrotic lung disease was generated from two institutions. We separated the scans into three non-overlapping cohorts (training set, n=929; validation set, n=89; and test set A, n=139) and classified them using 2011 ATS/ERS/JRS/ALAT idiopathic pulmonary fibrosis diagnostic guidelines. For each scan, the lungs were segmented and resampled to create a maximum of 500 unique four slice combinations, which we converted into image montages. The final training dataset consisted of 420 096 unique montages for algorithm training. We evaluated algorithm performance, reported as accuracy, prognostic accuracy, and weighted κ coefficient (κw) of interobserver agreement, on test set A and a cohort of 150 high-resolution CT scans (test set B) with fibrotic lung disease compared with the majority vote of 91 specialist thoracic radiologists drawn from multiple international thoracic imaging societies. We then reclassified high-resolution CT scans according to Fleischner Society diagnostic criteria for idiopathic pulmonary fibrosis. We retrained the algorithm using these criteria and evaluated its performance on 75 fibrotic lung disease specific high-resolution CT scans compared with four specialist thoracic radiologists using weighted κ coefficient of interobserver agreement.

FINDINGS

The accuracy of the algorithm on test set A was 76·4%, with 92·7% of diagnoses within one category. The algorithm took 2·31 s to evaluate 150 four slice montages (each montage representing a single case from test set B). The median accuracy of the thoracic radiologists on test set B was 70·7% (IQR 65·3-74·7), and the accuracy of the algorithm was 73·3% (93·3% were within one category), outperforming 60 (66%) of 91 thoracic radiologists. Median interobserver agreement between each of the thoracic radiologists and the radiologist's majority opinion was good (κw=0·67 [IQR 0·58-0·72]). Interobserver agreement between the algorithm and the radiologist's majority opinion was good (κw=0·69), outperforming 56 (62%) of 91 thoracic radiologists. The algorithm provided equally prognostic discrimination between usual interstitial pneumonia and non-usual interstitial pneumonia diagnoses (hazard ratio 2·88, 95% CI 1·79-4·61, p<0·0001) compared with the majority opinion of the thoracic radiologists (2·74, 1·67-4·48, p<0·0001). For Fleischner Society high-resolution CT criteria for usual interstitial pneumonia, median interobserver agreement between the radiologists was moderate (κw=0·56 [IQR 0·55-0·58]), but was good between the algorithm and the radiologists (κw=0·64 [0·55-0·72]).

INTERPRETATION

High-resolution CT evaluation by a deep learning algorithm might provide low-cost, reproducible, near-instantaneous classification of fibrotic lung disease with human-level accuracy. These methods could be of benefit to centres at which thoracic imaging expertise is scarce, as well as for stratification of patients in clinical trials.

FUNDING

None.

摘要

背景

基于国际诊断指南,高分辨率 CT 在纤维化性肺疾病的诊断中起着核心作用。在正确的临床环境下,如果高分辨率 CT 表现为寻常型间质性肺炎,那么可以在不进行外科肺活检的情况下诊断为特发性肺纤维化。我们研究了一种深度学习算法,用于根据两项国际诊断指南声明中规定的标准,对纤维化性肺疾病的高分辨率 CT 进行自动分类:2011 年美国胸科学会(ATS)/欧洲呼吸学会(ERS)/日本呼吸学会(JRS)/拉丁美洲胸科协会(ALAT)特发性肺纤维化诊断和管理指南,以及弗莱希纳学会特发性肺纤维化的诊断标准。

方法

在这项病例队列研究中,为了开发和测试算法,我们从两个机构生成了一个包含 1157 份匿名高分辨率 CT 扫描的数据库,这些扫描显示有弥漫性纤维化性肺疾病的证据。我们将这些扫描分为三个不重叠的队列(训练集,n=929;验证集,n=89;和测试集 A,n=139),并使用 2011 年 ATS/ERS/JRS/ALAT 特发性肺纤维化诊断指南对其进行分类。对于每个扫描,我们对肺部进行分割并重新采样,以创建最多 500 个独特的四片组合,我们将其转换为图像蒙太奇。最终的训练数据集由 420096 个独特的蒙太奇组成,用于算法训练。我们在测试集 A 和一个包含 150 份纤维化性肺疾病高分辨率 CT 扫描的队列(测试集 B)上评估了算法的性能,报告了准确性、预后准确性和观察者间一致性加权 κ 系数(κw),并与来自多个国际胸部成像协会的 91 位胸部放射学家的多数投票进行了比较。然后,我们根据弗莱希纳学会特发性肺纤维化的诊断标准对高分辨率 CT 扫描进行重新分类。我们使用这些标准重新训练了算法,并使用加权 κ 系数评估了其在 75 份纤维化性肺疾病特定高分辨率 CT 扫描上的性能,与四位胸部放射学家进行了比较。

结果

算法在测试集 A 上的准确性为 76.4%,92.7%的诊断在一个类别内。算法评估 150 个四片蒙太奇(每个蒙太奇代表测试集 B 中的一个病例)需要 2.31 秒。测试集 B 中胸部放射学家的中位数准确性为 70.7%(IQR 65.3-74.7),算法的准确性为 73.3%(93.3%在一个类别内),优于 91 位胸部放射学家中的 60 位(66%)。每位胸部放射学家与放射学家多数意见之间的观察者间一致性中位数良好(κw=0.67 [IQR 0.58-0.72])。算法与放射学家多数意见之间的观察者间一致性良好(κw=0.69),优于 91 位胸部放射学家中的 56 位(62%)。与胸部放射学家的多数意见相比,该算法在寻常型间质性肺炎和非寻常型间质性肺炎诊断之间提供了同样的预后判别能力(风险比 2.88,95%CI 1.79-4.61,p<0.0001)。对于弗莱希纳学会的寻常型间质性肺炎高分辨率 CT 标准,放射学家之间的观察者间一致性中位数为中度(κw=0.56 [IQR 0.55-0.58]),但算法与放射学家之间的一致性良好(κw=0.64 [0.55-0.72])。

解释

深度学习算法对高分辨率 CT 的评估可能提供具有人类水平准确性的纤维化性肺疾病的低成本、可重复、近乎即时的分类。这些方法可能对胸部成像专业知识稀缺的中心以及临床试验中的患者分层都有帮助。

资助

无。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验