Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Free Radic Biol Med. 2018 Dec;129:454-462. doi: 10.1016/j.freeradbiomed.2018.10.426. Epub 2018 Oct 16.
Glutathione peroxidase 4 (GPX4) is a regulator of ferroptosis (iron-dependent, non-apoptotic cell death); its inhibition can render therapy-resistant cancer cells susceptible to ferroptosis. However, some cancer cells develop mechanisms protective against ferroptosis; understanding these mechanisms could help overcome chemoresistance. In this study, we investigated the molecular mechanisms underlying resistance to ferroptosis induced by GPX4 inhibition in head and neck cancer (HNC). The effects of two GPX4 inhibitors, (1S, 3R)-RSL3 and ML-162, and of trigonelline were tested in HNC cell lines, including cisplatin-resistant (HN3R) and acquired RSL3-resistant (HN3-rslR) cells. The effects of the inhibitors and trigonelline, as well as of inhibition of the p62, Keap1, or Nrf2 genes, were assessed by cell viability, cell death, lipid ROS production, and protein expression, and in mouse tumor xenograft models. Treatment with RSL3 or ML-162 induced the ferroptosis of HNC cells to varying degrees. RSL3 or ML-162 treatment increased the expression of p62 and Nrf2 in chemoresistant HN3R and HN3-rslR cells, inactivated Keap1, and increased expression of the phospho-PERK-ATF4-SESN2 pathway. Transcriptional activation of Nrf2 was associated with resistance to ferroptosis. Overexpression of Nrf2 by inhibiting Keap1 or Nrf2 gene transfection rendered chemosensitive HN3 cells resistant to RSL3. However, Nrf2 inhibition or p62 silencing sensitized HN3R cells to RSL3. Trigonelline sensitized chemoresistant HNC cells to RSL3 treatment in a mouse model transplanted with HN3R. Thus, activation of the Nrf2-ARE pathway contributed to the resistance of HNC cells to GPX4 inhibition, and inhibition of this pathway reversed the resistance to ferroptosis in HNC.
谷胱甘肽过氧化物酶 4(GPX4)是铁依赖性非凋亡细胞死亡(铁死亡)的调节剂;其抑制作用可使耐药的癌细胞对铁死亡敏感。然而,一些癌细胞会产生对抗铁死亡的保护机制;了解这些机制可能有助于克服化疗耐药性。在这项研究中,我们研究了谷胱甘肽过氧化物酶 4 抑制剂(GPX4i)诱导的头颈部癌症(HNC)细胞抵抗铁死亡的分子机制。我们在包括顺铂耐药(HN3R)和获得性 RSL3 耐药(HN3-rslR)细胞在内的 HNC 细胞系中测试了两种 GPX4 抑制剂(1S,3R)-RSL3 和 ML-162 以及瓜氨酸的作用。通过细胞活力、细胞死亡、脂质 ROS 产生和蛋白质表达以及在小鼠肿瘤异种移植模型中评估了抑制剂和瓜氨酸以及 p62、Keap1 或 Nrf2 基因抑制的作用。RSL3 或 ML-162 处理在不同程度上诱导了 HNC 细胞的铁死亡。RSL3 或 ML-162 处理增加了化学抗性 HN3R 和 HN3-rslR 细胞中 p62 和 Nrf2 的表达,使 Keap1 失活,并增加了磷酸化 PERK-ATF4-SESN2 通路的表达。Nrf2 的转录激活与铁死亡抵抗有关。通过抑制 Keap1 或 Nrf2 基因转染过表达 Nrf2 使化学敏感的 HN3 细胞对 RSL3 产生抗性。然而,Nrf2 抑制或 p62 沉默使 HN3R 细胞对 RSL3 敏感。瓜氨酸在 HN3R 移植小鼠模型中增强了 HN3R 细胞对 RSL3 治疗的敏感性。因此,Nrf2-ARE 通路的激活导致 HNC 细胞对 GPX4i 的抵抗,而抑制该通路可逆转 HNC 细胞对铁死亡的抵抗。