Suppr超能文献

KRAS 抑制诱导的 MYC 降解被 MEK5-ERK5 补偿机制拮抗。

KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism.

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Cancer Cell. 2018 Nov 12;34(5):807-822.e7. doi: 10.1016/j.ccell.2018.10.001.

Abstract

Our recent ERK1/2 inhibitor analyses in pancreatic ductal adenocarcinoma (PDAC) indicated ERK1/2-independent mechanisms maintaining MYC protein stability. To identify these mechanisms, we determined the signaling networks by which mutant KRAS regulates MYC. Acute KRAS suppression caused rapid proteasome-dependent loss of MYC protein, through both ERK1/2-dependent and -independent mechanisms. Surprisingly, MYC degradation was independent of PI3K-AKT-GSK3β signaling and the E3 ligase FBWX7. We then established and applied a high-throughput screen for MYC protein degradation and performed a kinome-wide proteomics screen. We identified an ERK1/2-inhibition-induced feedforward mechanism dependent on EGFR and SRC, leading to ERK5 activation and phosphorylation of MYC at S62, preventing degradation. Concurrent inhibition of ERK1/2 and ERK5 disrupted this mechanism, synergistically causing loss of MYC and suppressing PDAC growth.

摘要

我们最近在胰腺导管腺癌 (PDAC) 中进行的 ERK1/2 抑制剂分析表明,ERK1/2 独立的机制维持 MYC 蛋白稳定性。为了确定这些机制,我们确定了突变型 KRAS 调节 MYC 的信号网络。急性 KRAS 抑制通过 ERK1/2 依赖和非依赖机制导致 MYC 蛋白的快速蛋白酶体依赖性丧失。令人惊讶的是,MYC 的降解不依赖于 PI3K-AKT-GSK3β 信号和 E3 连接酶 FBWX7。然后,我们建立并应用了一种用于 MYC 蛋白降解的高通量筛选,并进行了全激酶组蛋白质组学筛选。我们确定了一种 ERK1/2 抑制诱导的反馈机制,该机制依赖于 EGFR 和 SRC,导致 ERK5 激活和 MYC 在 S62 上的磷酸化,从而阻止降解。同时抑制 ERK1/2 和 ERK5 破坏了这种机制,协同导致 MYC 丧失并抑制 PDAC 生长。

相似文献

1
KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism.
Cancer Cell. 2018 Nov 12;34(5):807-822.e7. doi: 10.1016/j.ccell.2018.10.001.
3
Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells.
Oncogene. 2016 Jul 21;35(29):3880-6. doi: 10.1038/onc.2015.437. Epub 2015 Nov 23.
4
Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression.
Cancer Cell. 2016 Jan 11;29(1):75-89. doi: 10.1016/j.ccell.2015.11.011. Epub 2015 Dec 24.
5
Activation of either ERK1/2 or ERK5 MAP kinase pathways can lead to disruption of the actin cytoskeleton.
J Cell Sci. 2005 Apr 15;118(Pt 8):1663-71. doi: 10.1242/jcs.02308. Epub 2005 Mar 29.
6
KRAS(G12D)- and BRAF(V600E)-induced transformation of murine pancreatic epithelial cells requires MEK/ERK-stimulated IGF1R signaling.
Mol Cancer Res. 2012 Sep;10(9):1228-39. doi: 10.1158/1541-7786.MCR-12-0340-T. Epub 2012 Aug 7.
7
Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
Gastroenterology. 2014 Nov;147(5):1119-33.e4. doi: 10.1053/j.gastro.2014.08.002. Epub 2014 Aug 12.
8
Characterization of the MEK5-ERK5 module in human neutrophils and its relationship to ERK1/ERK2 in the chemotactic response.
J Biol Chem. 2004 Nov 26;279(48):49825-34. doi: 10.1074/jbc.M406892200. Epub 2004 Sep 20.

引用本文的文献

2
KRAS: the Achilles' heel of pancreas cancer biology.
J Clin Invest. 2025 Aug 15;135(16). doi: 10.1172/JCI191939.
4
Proteomics in pancreatic cancer.
Biomark Res. 2025 Jul 6;13(1):93. doi: 10.1186/s40364-025-00805-y.
5
MYC: The Guardian of Its Own Chaos.
Bioessays. 2025 Jul;47(7):e70010. doi: 10.1002/bies.70010. Epub 2025 Jun 9.
9
The MEK5/ERK5 pathway promotes the activation of the Hedgehog/GLI signaling in melanoma cells.
Cell Oncol (Dordr). 2025 Feb 25. doi: 10.1007/s13402-025-01050-z.
10
A first-in-class selective inhibitor of ERK1/2 and ERK5 overcomes drug resistance with a single-molecule strategy.
Signal Transduct Target Ther. 2025 Feb 20;10(1):70. doi: 10.1038/s41392-025-02169-z.

本文引用的文献

1
KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer.
Cold Spring Harb Perspect Med. 2018 Sep 4;8(9):a031435. doi: 10.1101/cshperspect.a031435.
3
Progress towards a public chemogenomic set for protein kinases and a call for contributions.
PLoS One. 2017 Aug 2;12(8):e0181585. doi: 10.1371/journal.pone.0181585. eCollection 2017.
4
A compendium of ERK targets.
FEBS Lett. 2017 Sep;591(17):2607-2615. doi: 10.1002/1873-3468.12740. Epub 2017 Jul 25.
5
Drugging the 'undruggable' cancer targets.
Nat Rev Cancer. 2017 Aug;17(8):502-508. doi: 10.1038/nrc.2017.36. Epub 2017 Jun 23.
7
Drugging RAS: Know the enemy.
Science. 2017 Mar 17;355(6330):1158-1163. doi: 10.1126/science.aam7622. Epub 2017 Mar 16.
8
Oncogenic signaling of MEK5-ERK5.
Cancer Lett. 2017 Apr 28;392:51-59. doi: 10.1016/j.canlet.2017.01.034. Epub 2017 Jan 30.
9
Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility.
Gut. 2018 Mar;67(3):508-520. doi: 10.1136/gutjnl-2016-313133. Epub 2017 Jan 10.
10
Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design.
Nat Rev Drug Discov. 2016 Nov;15(11):771-785. doi: 10.1038/nrd.2016.139. Epub 2016 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验