Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
Science. 2018 Nov 30;362(6418):1045-1048. doi: 10.1126/science.aau2528.
Models of systems memory consolidation postulate a fast-learning hippocampal store and a slowly developing, stable neocortical store. Accordingly, early neocortical contributions to memory are deemed to reflect a hippocampus-driven online reinstatement of encoding activity. In contrast, we found that learning rapidly engenders an enduring memory engram in the human posterior parietal cortex. We assessed microstructural plasticity via diffusion-weighted magnetic resonance imaging as well as functional brain activity in an object-location learning task. We detected neocortical plasticity as early as 1 hour after learning and found that it was learning specific, enabled correct recall, and overlapped with memory-related functional activity. These microstructural changes persisted over 12 hours. Our results suggest that new traces can be rapidly encoded into the parietal cortex, challenging views of a slow-learning neocortex.
系统记忆巩固模型假设存在一个快速学习的海马存储区和一个缓慢发展、稳定的新皮层存储区。因此,新皮层早期对记忆的贡献被认为反映了由海马体驱动的编码活动的在线恢复。相比之下,我们发现学习可以在人类顶叶后皮质中快速产生持久的记忆痕迹。我们通过弥散加权磁共振成像评估了微观结构的可塑性,以及在物体-位置学习任务中的大脑功能活动。我们在学习后 1 小时就检测到了新皮层的可塑性,并且发现它具有学习特异性,可以实现正确的回忆,并且与与记忆相关的功能活动重叠。这些微观结构变化持续了 12 小时以上。我们的研究结果表明,新的痕迹可以快速地被编入顶叶皮层,这对新皮层学习速度较慢的观点提出了挑战。