Petersen Ashley, Simon Noah, Witten Daniela
Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA,
Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA,
Ann Appl Stat. 2018 Dec;12(4):2430-2456. doi: 10.1214/18-AOAS1159. Epub 2018 Nov 13.
In the past few years, new technologies in the field of neuroscience have made it possible to simultaneously image activity in large populations of neurons at cellular resolution in behaving animals. In mid-2016, a huge repository of this so-called "calcium imaging" data was made publicly available. The availability of this large-scale data resource opens the door to a host of scientific questions for which new statistical methods must be developed. In this paper we consider the first step in the analysis of calcium imaging data-namely, identifying the neurons in a calcium imaging video. We propose a dictionary learning approach for this task. First, we perform image segmentation to develop a dictionary containing a huge number of candidate neurons. Next, we refine the dictionary using clustering. Finally, we apply the dictionary to select neurons and estimate their corresponding activity over time, using a sparse group lasso optimization problem. We assess performance on simulated calcium imaging data and apply our proposal to three calcium imaging data sets. Our proposed approach is implemented in the R package scalpel, which is available on CRAN.
在过去几年中,神经科学领域的新技术使得在行为动物中以细胞分辨率同时对大量神经元的活动进行成像成为可能。2016年年中,一个包含大量此类所谓“钙成像”数据的储存库被公开。这一大规模数据资源的可用性为众多科学问题打开了大门,而这些问题必须开发新的统计方法来解决。在本文中,我们考虑钙成像数据分析的第一步——即在钙成像视频中识别神经元。我们针对此任务提出了一种字典学习方法。首先,我们进行图像分割以构建一个包含大量候选神经元的字典。接下来,我们使用聚类对字典进行优化。最后,我们应用该字典来选择神经元并估计它们随时间的相应活动,这是通过一个稀疏组套索优化问题来实现的。我们在模拟钙成像数据上评估性能,并将我们的方法应用于三个钙成像数据集。我们提出的方法在R包scalpel中实现,该包可在CRAN上获取。