Suppr超能文献

手术刀:从钙成像数据中提取神经元

SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA.

作者信息

Petersen Ashley, Simon Noah, Witten Daniela

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota 55455, USA,

Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA,

出版信息

Ann Appl Stat. 2018 Dec;12(4):2430-2456. doi: 10.1214/18-AOAS1159. Epub 2018 Nov 13.

Abstract

In the past few years, new technologies in the field of neuroscience have made it possible to simultaneously image activity in large populations of neurons at cellular resolution in behaving animals. In mid-2016, a huge repository of this so-called "calcium imaging" data was made publicly available. The availability of this large-scale data resource opens the door to a host of scientific questions for which new statistical methods must be developed. In this paper we consider the first step in the analysis of calcium imaging data-namely, identifying the neurons in a calcium imaging video. We propose a dictionary learning approach for this task. First, we perform image segmentation to develop a dictionary containing a huge number of candidate neurons. Next, we refine the dictionary using clustering. Finally, we apply the dictionary to select neurons and estimate their corresponding activity over time, using a sparse group lasso optimization problem. We assess performance on simulated calcium imaging data and apply our proposal to three calcium imaging data sets. Our proposed approach is implemented in the R package scalpel, which is available on CRAN.

摘要

在过去几年中,神经科学领域的新技术使得在行为动物中以细胞分辨率同时对大量神经元的活动进行成像成为可能。2016年年中,一个包含大量此类所谓“钙成像”数据的储存库被公开。这一大规模数据资源的可用性为众多科学问题打开了大门,而这些问题必须开发新的统计方法来解决。在本文中,我们考虑钙成像数据分析的第一步——即在钙成像视频中识别神经元。我们针对此任务提出了一种字典学习方法。首先,我们进行图像分割以构建一个包含大量候选神经元的字典。接下来,我们使用聚类对字典进行优化。最后,我们应用该字典来选择神经元并估计它们随时间的相应活动,这是通过一个稀疏组套索优化问题来实现的。我们在模拟钙成像数据上评估性能,并将我们的方法应用于三个钙成像数据集。我们提出的方法在R包scalpel中实现,该包可在CRAN上获取。

相似文献

1
SCALPEL: EXTRACTING NEURONS FROM CALCIUM IMAGING DATA.
Ann Appl Stat. 2018 Dec;12(4):2430-2456. doi: 10.1214/18-AOAS1159. Epub 2018 Nov 13.
2
EXACT SPIKE TRAIN INFERENCE VIA ℓ OPTIMIZATION.
Ann Appl Stat. 2018 Dec;12(4):2457-2482. doi: 10.1214/18-AOAS1162. Epub 2018 Nov 13.
3
Fast nonconvex deconvolution of calcium imaging data.
Biostatistics. 2020 Oct 1;21(4):709-726. doi: 10.1093/biostatistics/kxy083.
4
Alternatively Constrained Dictionary Learning For Image Superresolution.
IEEE Trans Cybern. 2014 Mar;44(3):366-77. doi: 10.1109/TCYB.2013.2256347. Epub 2013 May 2.
5
Dictionary learning for sparse representation and classification of neural spikes.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:3486-3489. doi: 10.1109/EMBC.2016.7591479.
7
Shape prior modeling using sparse representation and online dictionary learning.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):435-42. doi: 10.1007/978-3-642-33454-2_54.
8
Endmember Learning with K-Means through SCD Model in Hyperspectral Scene Reconstructions.
J Imaging. 2019 Nov 15;5(11):85. doi: 10.3390/jimaging5110085.
10
Alzheimer's disease detection via automatic 3D caudate nucleus segmentation using coupled dictionary learning with level set formulation.
Comput Methods Programs Biomed. 2016 Dec;137:329-339. doi: 10.1016/j.cmpb.2016.09.007. Epub 2016 Sep 28.

引用本文的文献

1
Imaging neuronal voltage beyond the scattering limit.
Nat Methods. 2025 May 19. doi: 10.1038/s41592-025-02692-5.
3
Sharing neurophysiology data from the Allen Brain Observatory.
Elife. 2023 Jul 11;12:e85550. doi: 10.7554/eLife.85550.
4
A minimal-complexity light-sheet microscope maps network activity in 3D neuronal systems.
Sci Rep. 2022 Nov 28;12(1):20420. doi: 10.1038/s41598-022-24350-y.
5
SpecSeg is a versatile toolbox that segments neurons and neurites in chronic calcium imaging datasets based on low-frequency cross-spectral power.
Cell Rep Methods. 2022 Sep 20;2(10):100299. doi: 10.1016/j.crmeth.2022.100299. eCollection 2022 Oct 24.
6
Review of data processing of functional optical microscopy for neuroscience.
Neurophotonics. 2022 Oct;9(4):041402. doi: 10.1117/1.NPh.9.4.041402. Epub 2022 Aug 4.
7
cytoNet: Spatiotemporal network analysis of cell communities.
PLoS Comput Biol. 2022 Jun 13;18(6):e1009846. doi: 10.1371/journal.pcbi.1009846. eCollection 2022 Jun.
8
GraFT: Graph Filtered Temporal Dictionary Learning for Functional Neural Imaging.
IEEE Trans Image Process. 2022;31:3509-3524. doi: 10.1109/TIP.2022.3171414. Epub 2022 May 18.
9
Detecting and correcting false transients in calcium imaging.
Nat Methods. 2022 Apr;19(4):470-478. doi: 10.1038/s41592-022-01422-5. Epub 2022 Mar 28.
10
Segmentation of Neurons from Fluorescence Calcium Recordings Beyond Real-time.
Nat Mach Intell. 2021 Jul;3(7):590-600. doi: 10.1038/s42256-021-00342-x. Epub 2021 May 20.

本文引用的文献

1
EXACT SPIKE TRAIN INFERENCE VIA ℓ OPTIMIZATION.
Ann Appl Stat. 2018 Dec;12(4):2457-2482. doi: 10.1214/18-AOAS1162. Epub 2018 Nov 13.
3
Fast online deconvolution of calcium imaging data.
PLoS Comput Biol. 2017 Mar 14;13(3):e1005423. doi: 10.1371/journal.pcbi.1005423. eCollection 2017 Mar.
4
Brain-data gold mine could reveal how neurons compute.
Nature. 2016 Jul 14;535(7611):209-10. doi: 10.1038/535209a.
5
Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data.
Neuron. 2016 Jan 20;89(2):285-99. doi: 10.1016/j.neuron.2015.11.037. Epub 2016 Jan 7.
6
Hierarchical Clustering With Prototypes via Minimax Linkage.
J Am Stat Assoc. 2011;106(495):1075-1084. doi: 10.1198/jasa.2011.tm10183.
7
Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy.
Nat Methods. 2014 Jul;11(7):727-730. doi: 10.1038/nmeth.2964. Epub 2014 May 18.
8
Detecting cells using non-negative matrix factorization on calcium imaging data.
Neural Netw. 2014 Jul;55:11-9. doi: 10.1016/j.neunet.2014.03.007. Epub 2014 Mar 24.
9
Ultrasensitive fluorescent proteins for imaging neuronal activity.
Nature. 2013 Jul 18;499(7458):295-300. doi: 10.1038/nature12354.
10
Whole-brain functional imaging at cellular resolution using light-sheet microscopy.
Nat Methods. 2013 May;10(5):413-20. doi: 10.1038/nmeth.2434. Epub 2013 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验