Suppr超能文献

功能多样的 V 型 CRISPR-Cas 系统。

Functionally diverse type V CRISPR-Cas systems.

机构信息

Arbor Biotechnologies, Cambridge, MA 02139, USA.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.

出版信息

Science. 2019 Jan 4;363(6422):88-91. doi: 10.1126/science.aav7271. Epub 2018 Dec 6.

Abstract

Type V CRISPR-Cas systems are distinguished by a single RNA-guided RuvC domain-containing effector, Cas12. Although effectors of subtypes V-A (Cas12a) and V-B (Cas12b) have been studied in detail, the distinct domain architectures and diverged RuvC sequences of uncharacterized Cas12 proteins suggest unexplored functional diversity. Here, we identify and characterize Cas12c, -g, -h, and -i. Cas12c, -h, and -i demonstrate RNA-guided double-stranded DNA (dsDNA) interference activity. Cas12i exhibits markedly different efficiencies of CRISPR RNA spacer complementary and noncomplementary strand cleavage resulting in predominant dsDNA nicking. Cas12g is an RNA-guided ribonuclease (RNase) with collateral RNase and single-strand DNase activities. Our study reveals the functional diversity emerging along different routes of type V CRISPR-Cas evolution and expands the CRISPR toolbox.

摘要

V 型 CRISPR-Cas 系统的特点是单个 RNA 指导的 RuvC 结构域包含效应物 Cas12。尽管亚型 V-A(Cas12a)和 V-B(Cas12b)的效应物已被详细研究,但尚未表征的 Cas12 蛋白的独特结构域架构和分化的 RuvC 序列表明存在尚未探索的功能多样性。在这里,我们鉴定和表征了 Cas12c、-g、-h 和 -i。Cas12c、-h 和 -i 表现出 RNA 指导的双链 DNA(dsDNA)干扰活性。Cas12i 表现出明显不同的 CRISPR RNA 间隔互补和非互补链切割效率,导致主要的 dsDNA 切口。Cas12g 是一种 RNA 指导的核糖核酸酶(RNase),具有附带的 RNase 和单链 DNA 酶活性。我们的研究揭示了 V 型 CRISPR-Cas 进化不同途径中出现的功能多样性,并扩展了 CRISPR 工具包。

相似文献

1
Functionally diverse type V CRISPR-Cas systems.
Science. 2019 Jan 4;363(6422):88-91. doi: 10.1126/science.aav7271. Epub 2018 Dec 6.
2
Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system.
Mol Biol Rep. 2023 Apr;50(4):3723-3738. doi: 10.1007/s11033-023-08240-8. Epub 2023 Jan 17.
3
A scoutRNA Is Required for Some Type V CRISPR-Cas Systems.
Mol Cell. 2020 Aug 6;79(3):416-424.e5. doi: 10.1016/j.molcel.2020.06.022. Epub 2020 Jul 8.
4
Structure of the type V-C CRISPR-Cas effector enzyme.
Mol Cell. 2022 May 19;82(10):1865-1877.e4. doi: 10.1016/j.molcel.2022.03.006. Epub 2022 Apr 1.
5
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
6
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
7
Defining the seed sequence of the Cas12b CRISPR-Cas effector complex.
RNA Biol. 2019 Apr;16(4):413-422. doi: 10.1080/15476286.2018.1495492. Epub 2018 Aug 17.
8
Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.
Biochemistry. 2021 Dec 14;60(49):3783-3800. doi: 10.1021/acs.biochem.1c00354. Epub 2021 Nov 10.
9
Analysis of metal-dependent DNA nicking activities by Cas endonucleases.
Methods Enzymol. 2025;712:117-142. doi: 10.1016/bs.mie.2025.01.034. Epub 2025 Feb 7.
10
CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks.
Elife. 2020 Jun 10;9:e55143. doi: 10.7554/eLife.55143.

引用本文的文献

2
Integrating metagenomics and cultivation unveils oral phage diversity and potential impact on hosts.
NPJ Biofilms Microbiomes. 2025 Jul 26;11(1):145. doi: 10.1038/s41522-025-00773-z.
3
Structural and mechanistic insights into the sequential dsDNA cleavage by SpCas12f1.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf588.
4
Mechanisms and engineering of a miniature type V-N CRISPR-Cas12 effector enzyme.
Nat Commun. 2025 Jul 1;16(1):5667. doi: 10.1038/s41467-025-61290-3.
5
Recent advances in CRISPR-based single-nucleotide fidelity diagnostics.
Commun Med (Lond). 2025 Jul 1;5(1):252. doi: 10.1038/s43856-025-00933-4.
6
Kinetic analysis and engineering of thermostable Cas12a for nucleic acid detection.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf509.
7
Innovative nucleic acid detection of utilizing the PAM-unconventional, one-step LAMP/CRISPR-Cas12b detection platforms.
Front Cell Infect Microbiol. 2025 May 29;15:1594271. doi: 10.3389/fcimb.2025.1594271. eCollection 2025.
8
A bacterial toxin-antitoxin system as a native defence element against RNA phages.
Biol Lett. 2025 Jun;21(6):20250080. doi: 10.1098/rsbl.2025.0080. Epub 2025 Jun 11.
9
Engineered Cas12j-8 is a Versatile Platform for Multiplexed Genome Modulation in Mammalian Cells.
Adv Sci (Weinh). 2025 Sep;12(33):e02593. doi: 10.1002/advs.202502593. Epub 2025 Jun 10.
10
Structural basis for target DNA cleavage and guide RNA processing by CRISPR-Casλ2.
Commun Biol. 2025 Jun 5;8(1):876. doi: 10.1038/s42003-025-08300-8.

本文引用的文献

2
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes.
Science. 2018 Nov 16;362(6416):839-842. doi: 10.1126/science.aav4294. Epub 2018 Oct 18.
3
CRISPR-Cas guides the future of genetic engineering.
Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011.
4
Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.
Mol Cell. 2018 Apr 19;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub 2018 Mar 15.
5
Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.
Cell. 2018 Apr 19;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033. Epub 2018 Mar 15.
6
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.
7
CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity.
Science. 2018 Apr 27;360(6387):436-439. doi: 10.1126/science.aar6245. Epub 2018 Feb 15.
8
Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6.
Science. 2018 Apr 27;360(6387):439-444. doi: 10.1126/science.aaq0179. Epub 2018 Feb 15.
9
RNA editing with CRISPR-Cas13.
Science. 2017 Nov 24;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub 2017 Oct 25.
10
Evolutionary Genomics of Defense Systems in Archaea and Bacteria.
Annu Rev Microbiol. 2017 Sep 8;71:233-261. doi: 10.1146/annurev-micro-090816-093830. Epub 2017 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验