Suppr超能文献

基于光致发光半导体量子点的传感。

Sensing with photoluminescent semiconductor quantum dots.

机构信息

Department of Materials Science and Engineering, Boston University, Boston, United States of America.

出版信息

Methods Appl Fluoresc. 2019 Jan 24;7(1):012005. doi: 10.1088/2050-6120/aaf6f8.

Abstract

Fluorescent sensors benefit from high signal-to-noise and multiple measurement modalities, enabling a multitude of applications and flexibility of design. Semiconductor nanocrystal quantum dots (QDs) are excellent fluorophores for sensors because of their extraordinary optical properties. They have high thermal and photochemical stability compared to organic dyes or fluorescent proteins and are extremely bright due to their large molar cross-sections. In contrast to organic dyes, QD emission profiles are symmetric, with relatively narrow bandwidths. In addition, the size tunability of their emission color, which is a result of quantum confinement, make QDs exceptional emitters with high color purity from the ultra-violet to near infrared wavelength range. The role of QDs in sensors ranges from simple fluorescent tags, as used in immunoassays, to intrinsic sensors that utilize the inherent photophysical response of QDs to fluctuations in temperature, electric field, or ion concentration. In more complex configurations, QDs and biomolecular recognition moieties like antibodies are combined with a third component to modulate the optical signal via energy transfer. QDs can act as donors, acceptors, or both in energy transfer-based sensors using Förster resonance energy transfer (FRET), nanometal surface energy transfer (NSET), or charge or electron transfer. The changes in both spectral response and photoluminescent lifetimes have been successfully harnessed to produce sensitive sensors and multiplexed devices. While technical challenges related to biofunctionalization and the high cost of laboratory-grade fluorimeters have thus far prevented broad implementation of QD-based sensing in clinical or commercial settings, improvements in bioconjugation methods and detection schemes, including using simple consumer devices like cell phone cameras, are lowering the barrier to broad use of more sensitive QD-based devices.

摘要

荧光传感器受益于高信噪比和多种测量模式,使其具有多种应用和设计灵活性。半导体纳米晶体量子点 (QD) 是传感器的优秀荧光团,因为它们具有非凡的光学性质。与有机染料或荧光蛋白相比,它们具有更高的热稳定性和光化学稳定性,并且由于其大摩尔横截面积,它们非常亮。与有机染料相比,QD 的发射谱是对称的,具有相对较窄的带宽。此外,它们的发射颜色的尺寸可调谐性是量子限制的结果,使 QD 成为具有从紫外到近红外波长范围的高颜色纯度的出色发射器。QD 在传感器中的作用范围从简单的荧光标记物(如免疫测定中使用的标记物)到利用 QD 对温度、电场或离子浓度波动的固有光物理响应的固有传感器。在更复杂的配置中,QD 和生物分子识别部分(如抗体)与第三部分结合,通过能量转移来调节光学信号。QD 可以在基于能量转移的传感器中充当供体、受体或两者,使用Förster 共振能量转移 (FRET)、纳米金属表面能量转移 (NSET) 或电荷或电子转移。光谱响应和荧光寿命的变化已成功用于产生灵敏的传感器和多路复用设备。尽管与生物功能化相关的技术挑战和实验室级荧光计的高成本迄今为止阻止了基于 QD 的传感在临床或商业环境中的广泛实施,但生物缀合方法和检测方案的改进,包括使用简单的消费设备(如手机摄像头),正在降低更灵敏的基于 QD 的设备广泛使用的障碍。

相似文献

1
Sensing with photoluminescent semiconductor quantum dots.
Methods Appl Fluoresc. 2019 Jan 24;7(1):012005. doi: 10.1088/2050-6120/aaf6f8.
2
Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer.
Acc Chem Res. 2022 Feb 15;55(4):551-564. doi: 10.1021/acs.accounts.1c00691. Epub 2022 Jan 27.
6
QD-Based FRET Probes at a Glance.
Sensors (Basel). 2015 Jun 4;15(6):13028-51. doi: 10.3390/s150613028.
7
Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.
Sensors (Basel). 2015 Jun 5;15(6):13288-325. doi: 10.3390/s150613288.
8
Förster resonance energy transfer investigations using quantum-dot fluorophores.
Chemphyschem. 2006 Jan 16;7(1):47-57. doi: 10.1002/cphc.200500217.
9
Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
Anal Bioanal Chem. 2016 Jul;408(17):4475-83. doi: 10.1007/s00216-016-9434-y. Epub 2016 Mar 12.
10
Quantum dot enabled molecular sensing and diagnostics.
Theranostics. 2012;2(7):631-54. doi: 10.7150/thno.4308. Epub 2012 Jul 4.

引用本文的文献

1
High-Detectivity Organic Photodetector with InP Quantum Dots in PTB7-Th:PCBM Ternary Bulk Heterojunction.
Polymers (Basel). 2025 Aug 13;17(16):2214. doi: 10.3390/polym17162214.
2
Advancing the Applications of 3D Printed Microfluidics: Utilizing Quantum Dots to Measure Internal Temperature.
Int J Heat Mass Transf. 2025 Dec 1;252. doi: 10.1016/j.ijheatmasstransfer.2025.127395. Epub 2025 Jun 25.
5
Quantum dot-based thermometry uncovers decreased myosin efficiency in an experimental intensive care unit model.
Front Physiol. 2024 Nov 20;15:1485249. doi: 10.3389/fphys.2024.1485249. eCollection 2024.
6
Using Recurrent Neural Networks to Reconstruct Temperatures from Simulated Fluorescent Data for use in Bio-Microfluidics.
Int J Thermophys. 2023 Nov;44(11). doi: 10.1007/s10765-023-03277-0. Epub 2023 Nov 2.
7
Advancements in nanomaterials for nanosensors: a comprehensive review.
Nanoscale Adv. 2024 May 24;6(16):4015-4046. doi: 10.1039/d4na00214h. eCollection 2024 Aug 6.
9
Luminescence Thermometry Beyond the Biological Realm.
ACS Nanosci Au. 2023 Dec 1;4(1):30-61. doi: 10.1021/acsnanoscienceau.3c00051. eCollection 2024 Feb 21.
10
Exploring the potential and safety of quantum dots in allergy diagnostics.
Microsyst Nanoeng. 2023 Nov 17;9:145. doi: 10.1038/s41378-023-00608-x. eCollection 2023.

本文引用的文献

1
Single-Nanoparticle Cell Barcoding by Tunable FRET from Lanthanides to Quantum Dots.
Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13686-13690. doi: 10.1002/anie.201807585. Epub 2018 Aug 28.
2
Sensitivity Enhancement of Förster Resonance Energy Transfer Immunoassays by Multiple Antibody Conjugation on Quantum Dots.
Bioconjug Chem. 2018 Jun 20;29(6):2082-2089. doi: 10.1021/acs.bioconjchem.8b00296. Epub 2018 Jun 6.
3
Challenges in paper-based fluorogenic optical sensing with smartphones.
Nano Converg. 2018;5(1):14. doi: 10.1186/s40580-018-0146-1. Epub 2018 May 4.
4
A Ligand System for the Flexible Functionalization of Quantum Dots via Click Chemistry.
Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4652-4656. doi: 10.1002/anie.201801113. Epub 2018 Mar 13.
5
Quantitative and rapid detection of C-reactive protein using quantum dot-based lateral flow test strip.
Anal Chim Acta. 2018 May 30;1008:1-7. doi: 10.1016/j.aca.2017.12.031. Epub 2018 Jan 8.
6
Membrane insertion of-and membrane potential sensing by-semiconductor voltage nanosensors: Feasibility demonstration.
Sci Adv. 2018 Jan 12;4(1):e1601453. doi: 10.1126/sciadv.1601453. eCollection 2018 Jan.
7
Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors.
ACS Chem Biol. 2018 Jul 20;13(7):1705-1713. doi: 10.1021/acschembio.7b00887. Epub 2018 Jan 4.
8
Innovative technologies for point-of-care testing of viral hepatitis in low-resource and decentralized settings.
J Viral Hepat. 2018 Feb;25(2):108-117. doi: 10.1111/jvh.12827. Epub 2017 Dec 27.
9
Quantum-Dot-Based Lateral Flow Immunoassay for Detection of Neonicotinoid Residues in Tea Leaves.
J Agric Food Chem. 2017 Nov 22;65(46):10107-10114. doi: 10.1021/acs.jafc.7b03981. Epub 2017 Nov 8.
10
Shell thickness effects on quantum dot brightness and energy transfer.
Nanoscale. 2017 Nov 2;9(42):16446-16458. doi: 10.1039/c7nr04296e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验