Department of Materials Science and Engineering, Boston University, Boston, United States of America.
Methods Appl Fluoresc. 2019 Jan 24;7(1):012005. doi: 10.1088/2050-6120/aaf6f8.
Fluorescent sensors benefit from high signal-to-noise and multiple measurement modalities, enabling a multitude of applications and flexibility of design. Semiconductor nanocrystal quantum dots (QDs) are excellent fluorophores for sensors because of their extraordinary optical properties. They have high thermal and photochemical stability compared to organic dyes or fluorescent proteins and are extremely bright due to their large molar cross-sections. In contrast to organic dyes, QD emission profiles are symmetric, with relatively narrow bandwidths. In addition, the size tunability of their emission color, which is a result of quantum confinement, make QDs exceptional emitters with high color purity from the ultra-violet to near infrared wavelength range. The role of QDs in sensors ranges from simple fluorescent tags, as used in immunoassays, to intrinsic sensors that utilize the inherent photophysical response of QDs to fluctuations in temperature, electric field, or ion concentration. In more complex configurations, QDs and biomolecular recognition moieties like antibodies are combined with a third component to modulate the optical signal via energy transfer. QDs can act as donors, acceptors, or both in energy transfer-based sensors using Förster resonance energy transfer (FRET), nanometal surface energy transfer (NSET), or charge or electron transfer. The changes in both spectral response and photoluminescent lifetimes have been successfully harnessed to produce sensitive sensors and multiplexed devices. While technical challenges related to biofunctionalization and the high cost of laboratory-grade fluorimeters have thus far prevented broad implementation of QD-based sensing in clinical or commercial settings, improvements in bioconjugation methods and detection schemes, including using simple consumer devices like cell phone cameras, are lowering the barrier to broad use of more sensitive QD-based devices.
荧光传感器受益于高信噪比和多种测量模式,使其具有多种应用和设计灵活性。半导体纳米晶体量子点 (QD) 是传感器的优秀荧光团,因为它们具有非凡的光学性质。与有机染料或荧光蛋白相比,它们具有更高的热稳定性和光化学稳定性,并且由于其大摩尔横截面积,它们非常亮。与有机染料相比,QD 的发射谱是对称的,具有相对较窄的带宽。此外,它们的发射颜色的尺寸可调谐性是量子限制的结果,使 QD 成为具有从紫外到近红外波长范围的高颜色纯度的出色发射器。QD 在传感器中的作用范围从简单的荧光标记物(如免疫测定中使用的标记物)到利用 QD 对温度、电场或离子浓度波动的固有光物理响应的固有传感器。在更复杂的配置中,QD 和生物分子识别部分(如抗体)与第三部分结合,通过能量转移来调节光学信号。QD 可以在基于能量转移的传感器中充当供体、受体或两者,使用Förster 共振能量转移 (FRET)、纳米金属表面能量转移 (NSET) 或电荷或电子转移。光谱响应和荧光寿命的变化已成功用于产生灵敏的传感器和多路复用设备。尽管与生物功能化相关的技术挑战和实验室级荧光计的高成本迄今为止阻止了基于 QD 的传感在临床或商业环境中的广泛实施,但生物缀合方法和检测方案的改进,包括使用简单的消费设备(如手机摄像头),正在降低更灵敏的基于 QD 的设备广泛使用的障碍。