State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, China.
J Dent. 2019 Feb;81:17-26. doi: 10.1016/j.jdent.2018.12.001. Epub 2018 Dec 12.
The objectives of this study were to: (1) develop a novel multifunctional composite with nanoparticles of silver (NAg), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate biofilm-inhibition via the multifunctional nanocomposite against three species of periodontal pathogens for the first time.
The multifunctional nanocomposite was fabricated by incorporating NAg, MPC, DMAHDM and NACP into the resin consisting of pyromellitic glycerol dimethacrylate (PMDGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). Three species (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) were tested for metabolic activity (MTT), live/dead staining, polysaccharide production and colony-forming units (CFU) of biofilms grown on resins.
Incorporation of 0.08% to 0.12% NAg, 3% MPC, 3% DMAHDM and 30% NACP did not compromise the mechanical properties of the composite (p > 0.1). The multifunctional nanocomposite reduced protein adsorption to nearly 1/10 of that of a commercial control (p < 0.05). For all three species, the biofilm CFU was reduced by about 5 and 1 orders of magnitude via the nanocomposite containing NAg + MPC + DMAHDM, compared to commercial control and the composite with MPC + DMAHDM, respectively.
The novel multifunctional nanocomposite achieved the greatest reduction in metabolic activity, polysaccharide and biofilm growth of three periodontal pathogens.
The strongly-antibacterial, multifunctional composite is promising for treating root lesions, alleviating periodontitis and protecting the periodontal tissues.
本研究的目的是:(1)开发一种新型多功能复合材料,其中包含纳米银(NAg)、2-(甲基丙烯酰氧)乙基磷酸胆碱(MPC)、二甲基氨基十六烷基甲基丙烯酸酯(DMAHDM)和无定形磷酸钙纳米颗粒(NACP);(2)首次研究该多功能纳米复合材料对三种牙周病原菌生物膜的抑制作用。
通过将 NAg、MPC、DMAHDM 和 NACP 掺入由均苯四甲酰基甘油二甲基丙烯酸酯(PMDGDM)和乙氧基化双酚 A 二甲基丙烯酸酯(EBPADMA)组成的树脂中,制备多功能纳米复合材料。将三种(牙龈卟啉单胞菌、伴放线放线杆菌和核梭杆菌)种属的代谢活性(MTT)、死活染色、多糖产生和生物膜形成单位(CFU)进行测试。
0.08%至 0.12%的 NAg、3%的 MPC、3%的 DMAHDM 和 30%的 NACP 的掺入并未影响复合材料的机械性能(p>0.1)。与商业对照相比,多功能纳米复合材料将蛋白质吸附量减少到近 1/10(p<0.05)。对于所有三种种属,与商业对照和仅含有 MPC+DMAHDM 的复合材料相比,含有 NAg+MPC+DMAHDM 的纳米复合材料将生物膜 CFU 分别降低了约 5 个和 1 个数量级。
新型多功能纳米复合材料对三种牙周病原菌的代谢活性、多糖和生物膜生长的抑制作用最强。
这种具有强烈抗菌作用的多功能复合材料有望用于治疗根面病变、缓解牙周炎和保护牙周组织。