Suppr超能文献

真核生物中蛋白质复合物组分的产生是计量的,且缺乏普遍的反馈调节。

Production of Protein-Complex Components Is Stoichiometric and Lacks General Feedback Regulation in Eukaryotes.

机构信息

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Cell Syst. 2018 Dec 26;7(6):580-589.e4. doi: 10.1016/j.cels.2018.11.003. Epub 2018 Dec 12.

Abstract

Constituents of multiprotein complexes are required at well-defined levels relative to each other. However, it remains unknown whether eukaryotic cells typically produce precise amounts of subunits, or instead rely on degradation to mitigate imprecise production. Here, we quantified the production rates of multiprotein complexes in unicellular and multicellular eukaryotes using ribosome profiling. By resolving read-mapping ambiguities, which occur for a large fraction of ribosome footprints and distort quantitation accuracy in eukaryotes, we found that obligate components of multiprotein complexes are produced in proportion to their stoichiometry, indicating that their abundances are already precisely tuned at the synthesis level. By systematically interrogating the impact of gene dosage variations in budding yeast, we found a general lack of negative feedback regulation protecting the normally precise rates of subunit synthesis. These results reveal a core principle of proteome homeostasis and highlight the evolution toward quantitative control at every step in the central dogma.

摘要

多蛋白复合物的组成部分彼此之间需要在特定水平上存在。然而,目前尚不清楚真核细胞通常是精确地产生亚基的量,还是依赖降解来减轻非精确生产的影响。在这里,我们使用核糖体图谱定量分析了单细胞和多细胞真核生物中多蛋白复合物的产生速率。通过解决核糖体足迹的大部分都存在的读映射歧义(这会扭曲真核生物的定量准确性),我们发现多蛋白复合物的必需成分是按照其化学计量比例产生的,这表明它们的丰度在合成水平上已经被精确地调节。通过系统地研究芽殖酵母中基因剂量变化的影响,我们发现缺乏一般的负反馈调节来保护亚基合成的正常精确速率。这些结果揭示了蛋白质组动态平衡的核心原则,并强调了在中心法则的每一步都朝着定量控制进化的趋势。

相似文献

1
Production of Protein-Complex Components Is Stoichiometric and Lacks General Feedback Regulation in Eukaryotes.
Cell Syst. 2018 Dec 26;7(6):580-589.e4. doi: 10.1016/j.cels.2018.11.003. Epub 2018 Dec 12.
2
Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling.
Nature. 2018 Sep;561(7722):268-272. doi: 10.1038/s41586-018-0462-y. Epub 2018 Aug 29.
3
Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes.
Mol Cell. 2020 Aug 20;79(4):546-560.e7. doi: 10.1016/j.molcel.2020.06.004. Epub 2020 Jun 25.
4
Precise Post-translational Tuning Occurs for Most Protein Complex Components during Meiosis.
Cell Rep. 2018 Dec 26;25(13):3603-3617.e2. doi: 10.1016/j.celrep.2018.12.008.
5
Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast.
Mol Biol Cell. 2008 Dec;19(12):5279-88. doi: 10.1091/mbc.e08-06-0661. Epub 2008 Oct 1.
6
Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex.
J Biol Chem. 2007 Nov 23;282(47):33977-84. doi: 10.1074/jbc.M706737200. Epub 2007 Sep 27.
9
Evolutionary rate heterogeneity of core and attachment proteins in yeast protein complexes.
Genome Biol Evol. 2013;5(7):1366-75. doi: 10.1093/gbe/evt096.
10
Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome.
Mol Biol Cell. 2011 Apr;22(7):911-20. doi: 10.1091/mbc.E10-08-0655. Epub 2011 Feb 2.

引用本文的文献

3
Mitochondrial genetics, signalling and stress responses.
Nat Cell Biol. 2025 Mar;27(3):393-407. doi: 10.1038/s41556-025-01625-w. Epub 2025 Mar 10.
4
Multilevel Gene Expression Changes in Lineages Containing Adaptive Copy Number Variants.
Mol Biol Evol. 2025 Feb 3;42(2). doi: 10.1093/molbev/msaf005.
6
Central dogma rates in human mitochondria.
Hum Mol Genet. 2024 May 22;33(R1):R34-R41. doi: 10.1093/hmg/ddae036.
7
Translation variation across genetic backgrounds reveals a post-transcriptional buffering signature in yeast.
Nucleic Acids Res. 2024 Mar 21;52(5):2434-2445. doi: 10.1093/nar/gkae030.
8
Resource allocation in mammalian systems.
Biotechnol Adv. 2024 Mar-Apr;71:108305. doi: 10.1016/j.biotechadv.2023.108305. Epub 2024 Jan 11.
9
The distinct translational landscapes of gram-negative Salmonella and gram-positive Listeria.
Nat Commun. 2023 Dec 9;14(1):8167. doi: 10.1038/s41467-023-43759-1.

本文引用的文献

1
Quality Control of Orphaned Proteins.
Mol Cell. 2018 Aug 2;71(3):443-457. doi: 10.1016/j.molcel.2018.07.001.
2
A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation.
Mol Cell. 2018 Apr 19;70(2):274-286.e7. doi: 10.1016/j.molcel.2018.02.035. Epub 2018 Apr 5.
3
Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry.
Cell. 2018 Apr 19;173(3):749-761.e38. doi: 10.1016/j.cell.2018.03.007. Epub 2018 Mar 29.
4
Ensembl 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. doi: 10.1093/nar/gkx1098.
5
Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide.
Mol Cell. 2017 Jul 6;67(1):71-83.e7. doi: 10.1016/j.molcel.2017.05.021. Epub 2017 Jun 15.
6
Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes.
PLoS Genet. 2017 Jan 25;13(1):e1006554. doi: 10.1371/journal.pgen.1006554. eCollection 2017 Jan.
7
The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368. doi: 10.1093/nar/gkw937. Epub 2016 Oct 18.
8
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
BMC Genomics. 2016 Nov 22;17(1):958. doi: 10.1186/s12864-016-3278-x.
9
Erratum: Near-optimal probabilistic RNA-seq quantification.
Nat Biotechnol. 2016 Aug 9;34(8):888. doi: 10.1038/nbt0816-888d.
10
Splicing-Mediated Autoregulation Modulates Rpl22p Expression in Saccharomyces cerevisiae.
PLoS Genet. 2016 Apr 20;12(4):e1005999. doi: 10.1371/journal.pgen.1005999. eCollection 2016 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验