Suppr超能文献

Gα12/13 偶联受体 LPA4 限制了饮食诱导肥胖中脂肪组织的适当扩张和重塑。

The Gα12/13-coupled receptor LPA4 limits proper adipose tissue expansion and remodeling in diet-induced obesity.

机构信息

Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.

Department of Immunology, Akita University Graduate School of Medicine, Akita, Japan.

出版信息

JCI Insight. 2018 Dec 20;3(24):97293. doi: 10.1172/jci.insight.97293.

Abstract

White adipose tissue (WAT) can dynamically expand and remodel through adipocyte hypertrophy and hyperplasia. The relative contribution of these 2 mechanisms to WAT expansion is a critical determinant of WAT function and dysfunction in obesity. However, little is known about the signaling systems that determine the mechanisms of WAT expansion. Here, we show that the GPCR LPA4 selectively activates Gα12/13 proteins in adipocytes and limits continuous remodeling and healthy expansion of WAT. LPA4-KO mice showed enhanced expression of mitochondrial and adipogenesis genes and reduced levels of inhibitory phosphorylation of PPARγ in WAT, along with increased production of adiponectin. Furthermore, LPA4-KO mice showed metabolically healthy obese phenotypes in a diet-induced obesity model, with continuous WAT expansion, as well as protection from WAT inflammation, hepatosteatosis, and insulin resistance. These findings unravel a potentially new signaling system that underlies WAT plasticity and expandability, providing a promising therapeutic approach for obesity-related metabolic disorders.

摘要

白色脂肪组织(WAT)可以通过脂肪细胞肥大和增生进行动态扩张和重塑。这两种机制对 WAT 扩张的相对贡献是 WAT 在肥胖中功能和功能障碍的关键决定因素。然而,对于决定 WAT 扩张机制的信号系统知之甚少。在这里,我们表明 G 蛋白偶联受体 LPA4 选择性地激活脂肪细胞中的 Gα12/13 蛋白,并限制 WAT 的持续重塑和健康扩张。LPA4-KO 小鼠在饮食诱导的肥胖模型中表现出 WAT 中线粒体和脂肪生成基因的表达增强,以及对 PPARγ 的抑制性磷酸化水平降低,同时脂联素的产生增加。此外,LPA4-KO 小鼠在饮食诱导的肥胖模型中表现出代谢健康的肥胖表型,WAT 持续扩张,并防止 WAT 炎症、肝脂肪变性和胰岛素抵抗。这些发现揭示了一个潜在的新信号系统,它是 WAT 可塑性和可扩展性的基础,为肥胖相关代谢紊乱提供了一种有前途的治疗方法。

相似文献

2
Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice.
Nutrition. 2014 Jul-Aug;30(7-8 Suppl):S31-6. doi: 10.1016/j.nut.2014.02.013. Epub 2014 Mar 12.
3
LMO3 reprograms visceral adipocyte metabolism during obesity.
J Mol Med (Berl). 2021 Aug;99(8):1151-1171. doi: 10.1007/s00109-021-02089-9. Epub 2021 May 20.
4
Lack of CUL4B in Adipocytes Promotes PPARγ-Mediated Adipose Tissue Expansion and Insulin Sensitivity.
Diabetes. 2017 Feb;66(2):300-313. doi: 10.2337/db16-0743. Epub 2016 Nov 29.
5
P2Y Receptor Promotes High-Fat Diet-Induced Obesity.
Front Endocrinol (Lausanne). 2020 Jun 3;11:341. doi: 10.3389/fendo.2020.00341. eCollection 2020.
6
Rice bran prevents high-fat diet-induced inflammation and macrophage content in adipose tissue.
Eur J Nutr. 2016 Sep;55(6):2011-9. doi: 10.1007/s00394-015-1015-x. Epub 2015 Aug 13.
7
Contribution of adipogenesis to healthy adipose tissue expansion in obesity.
J Clin Invest. 2019 Oct 1;129(10):4022-4031. doi: 10.1172/JCI129191.
8
Dysregulation of Amyloid Precursor Protein Impairs Adipose Tissue Mitochondrial Function and Promotes Obesity.
Nat Metab. 2019 Dec;1(12):1243-1257. doi: 10.1038/s42255-019-0149-1. Epub 2019 Dec 13.
9
10
Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome.
Autophagy. 2019 Nov;15(11):1882-1898. doi: 10.1080/15548627.2019.1596482. Epub 2019 Apr 6.

引用本文的文献

1
Whole-body deletion of Endospanin 1 protects from obesity-associated deleterious metabolic alterations.
JCI Insight. 2024 Apr 2;9(9):e168418. doi: 10.1172/jci.insight.168418.
2
Chemogenetic activation of G signaling enhances adipose tissue browning.
Signal Transduct Target Ther. 2023 Aug 21;8(1):307. doi: 10.1038/s41392-023-01524-2.
3
YAP/TAZ: Molecular pathway and disease therapy.
MedComm (2020). 2023 Aug 9;4(4):e340. doi: 10.1002/mco2.340. eCollection 2023 Aug.
4
Lysophosphatidic Acid Induced Apoptosis, DNA Damage, and Oxidative Stress in Spinal Cord Neurons by Upregulating LPA4/LPA6 Receptors.
Mediators Inflamm. 2022 Sep 30;2022:1818758. doi: 10.1155/2022/1818758. eCollection 2022.
5
Factors of Obesity and Metabolically Healthy Obesity in Asia.
Medicina (Kaunas). 2022 Sep 13;58(9):1271. doi: 10.3390/medicina58091271.
6
Gα and Gα: Versatility in Physiology and Pathology.
Front Cell Dev Biol. 2022 Feb 14;10:809425. doi: 10.3389/fcell.2022.809425. eCollection 2022.
7
Autotaxin-LPA-LPP3 Axis in Energy Metabolism and Metabolic Disease.
Int J Mol Sci. 2021 Sep 3;22(17):9575. doi: 10.3390/ijms22179575.
8
Regulatory roles of G-protein coupled receptors in adipose tissue metabolism and their therapeutic potential.
Arch Pharm Res. 2021 Feb;44(2):133-145. doi: 10.1007/s12272-021-01314-w. Epub 2021 Feb 7.
9
Gα signaling in metabolic diseases.
Exp Mol Med. 2020 Jun;52(6):896-910. doi: 10.1038/s12276-020-0454-5. Epub 2020 Jun 23.
10
Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis.
J Clin Invest. 2019 Oct 1;129(10):4032-4040. doi: 10.1172/JCI129192.

本文引用的文献

1
GPCR-Mediated Signaling of Metabolites.
Cell Metab. 2017 Apr 4;25(4):777-796. doi: 10.1016/j.cmet.2017.03.008.
2
The Role of the Immune System in Metabolic Health and Disease.
Cell Metab. 2017 Mar 7;25(3):506-521. doi: 10.1016/j.cmet.2017.02.006.
4
The Gq signalling pathway inhibits brown and beige adipose tissue.
Nat Commun. 2016 Mar 9;7:10895. doi: 10.1038/ncomms10895.
5
Metabolically Healthy Obesity: Personalised and Public Health Implications.
Trends Endocrinol Metab. 2016 Apr;27(4):189-191. doi: 10.1016/j.tem.2016.02.001. Epub 2016 Feb 23.
6
Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism.
PPAR Res. 2015;2015:816856. doi: 10.1155/2015/816856. Epub 2015 Sep 8.
9
Thiazolidinediones and the promise of insulin sensitization in type 2 diabetes.
Cell Metab. 2014 Oct 7;20(4):573-91. doi: 10.1016/j.cmet.2014.08.005. Epub 2014 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验