Suppr超能文献

主题检索筛选器:系统范围综述。

Topic search filters: a systematic scoping review.

机构信息

College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia.

South Australian Health Library Service, Flinders Medical Centre, Bedford Park, SA, Australia.

出版信息

Health Info Libr J. 2019 Mar;36(1):4-40. doi: 10.1111/hir.12244. Epub 2018 Dec 21.

Abstract

BACKGROUND

Searching for topics within large biomedical databases can be challenging, especially when topics are complex, diffuse, emerging or lack definitional clarity. Experimentally derived topic search filters offer a reliable solution to effective retrieval; however, their number and range of subject foci remain unknown.

OBJECTIVES

This systematic scoping review aims to identify and describe available experimentally developed topic search filters.

METHODS

Reports on topic search filter development (1990-) were sought using grey literature sources and 15 databases. Reports describing the conception and prospective development of a database-specific topic search and including an objectively measured estimate of its performance ('sensitivity') were included.

RESULTS

Fifty-four reports met inclusion criteria. Data were extracted and thematically synthesised to describe the characteristics of 58 topic search filters.

DISCUSSION

Topic search filters are proliferating and cover a wide range of subjects. Filter reports, however, often lack clear definitions of concepts and topic scope to guide users. Without standardised terminology, filters are challenging to find. Information specialists may benefit from a centralised topic filter repository and appraisal checklists to facilitate quality assessment.

CONCLUSION

Findings will help information specialists identify existing topic search filters and assist filter developers to build on current knowledge in the field.

摘要

背景

在大型生物医学数据库中搜索主题可能具有挑战性,尤其是当主题复杂、分散、新兴或缺乏明确的定义时。实验衍生的主题搜索过滤器为有效检索提供了可靠的解决方案;然而,它们的数量和主题焦点范围仍然未知。

目的

本系统范围的综述旨在确定和描述现有的实验开发的主题搜索过滤器。

方法

使用灰色文献来源和 15 个数据库搜索主题搜索过滤器开发报告(1990-)。报告描述了数据库特定主题搜索的概念和前瞻性开发,并包括对其性能(“敏感性”)的客观测量估计。

结果

54 份报告符合纳入标准。提取数据并进行主题综合,以描述 58 个主题搜索过滤器的特征。

讨论

主题搜索过滤器正在迅速增加,涵盖了广泛的主题。然而,过滤器报告往往缺乏明确的概念和主题范围的定义,以指导用户。没有标准化的术语,过滤器很难找到。信息专家可能受益于集中的主题过滤器存储库和评估检查表,以促进质量评估。

结论

研究结果将帮助信息专家识别现有的主题搜索过滤器,并帮助过滤器开发人员在该领域的现有知识基础上进行开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验