Suppr超能文献

一种唾液效应物通过引发水杨酸信号通路使粉虱能够取食寄主植物。

A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway.

机构信息

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China.

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China

出版信息

Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):490-495. doi: 10.1073/pnas.1714990116. Epub 2018 Dec 24.

Abstract

Phloem-feeding insects feed on plant phloem using their stylets. While ingesting phloem sap, these insects secrete saliva to circumvent plant defenses. Previous studies have shown that, to facilitate their feeding, many phloem-feeding insects can elicit the salicylic acid- (SA-) signaling pathway and thus suppress effective jasmonic acid defenses. However, the molecular basis for the regulation of the plant's defense by phloem-feeding insects remains largely unknown. Here, we show that Bt56, a whitefly-secreted low molecular weight salivary protein, is highly expressed in the whitefly primary salivary gland and is delivered into host plants during feeding. Overexpression of the gene promotes susceptibility of tobacco to the whitefly and elicits the SA-signaling pathway. In contrast, silencing the whitefly gene significantly decreases whitefly performance on host plants and interrupts whitefly phloem feeding with whiteflies losing the ability to activate the SA pathway. Protein-protein interaction assays show that the Bt56 protein directly interacts with a tobacco KNOTTED 1-like homeobox transcription factor that decreases whitefly performance and suppresses whitefly-induced SA accumulation. The orthologous genes are highly conserved but differentially expressed in different species of whiteflies. In conclusion, Bt56 is a key salivary effector that promotes whitefly performance by eliciting salicylic acid-signaling pathway.

摘要

取食韧皮部的昆虫使用口针取食植物韧皮部。在摄取韧皮部汁液的同时,这些昆虫会分泌唾液来规避植物防御。先前的研究表明,为了促进取食,许多取食韧皮部的昆虫可以引发水杨酸(SA)信号通路,从而抑制有效的茉莉酸防御。然而,取食韧皮部的昆虫对植物防御的调控分子基础在很大程度上仍然未知。在这里,我们表明,烟粉虱分泌的一种低分子量唾液蛋白 Bt56 在烟粉虱的初级唾液腺中高度表达,并在取食过程中被输送到宿主植物中。基因的过表达促进了烟草对白粉虱的易感性,并引发了 SA 信号通路。相比之下,沉默烟粉虱基因显著降低了烟粉虱在宿主植物上的性能,并中断了烟粉虱的韧皮部取食,使它们失去了激活 SA 途径的能力。蛋白-蛋白相互作用分析表明,Bt56 蛋白直接与烟草 KNOTTED 1 类同源盒转录因子相互作用,降低了烟粉虱的性能,并抑制了烟粉虱诱导的 SA 积累。该基因的同源基因在不同的粉虱物种中高度保守,但表达水平不同。总之,Bt56 是一种关键的唾液效应因子,通过引发水杨酸信号通路来促进粉虱的性能。

相似文献

1
A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):490-495. doi: 10.1073/pnas.1714990116. Epub 2018 Dec 24.
2
Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.
J Chem Ecol. 2013 May;39(5):612-9. doi: 10.1007/s10886-013-0283-2. Epub 2013 Apr 19.
3
A salivary ferritin in the whitefly suppresses plant defenses and facilitates host exploitation.
J Exp Bot. 2019 Jun 28;70(12):3343-3355. doi: 10.1093/jxb/erz152.
5
Long-term, sustained feeding by Asian citrus psyllid disrupts salicylic acid homeostasis in sweet orange.
BMC Plant Biol. 2019 Nov 12;19(1):493. doi: 10.1186/s12870-019-2114-2.
6
Whiteflies glycosylate salicylic acid and secrete the conjugate via their honeydew.
J Chem Ecol. 2015 Jan;41(1):52-8. doi: 10.1007/s10886-014-0543-9. Epub 2015 Jan 8.
7
Whitefly interactions with plants.
Curr Opin Insect Sci. 2017 Feb;19:70-75. doi: 10.1016/j.cois.2017.02.001. Epub 2017 Feb 13.
8
A novel salivary effector, BtE3, is essential for whitefly performance on host plants.
J Exp Bot. 2023 Mar 28;74(6):2146-2159. doi: 10.1093/jxb/erad024.
9
Airborne host-plant manipulation by whiteflies via an inducible blend of plant volatiles.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7387-7396. doi: 10.1073/pnas.1818599116. Epub 2019 Mar 25.
10
Small RNAs from Are Transferred to Phloem during Feeding.
Front Plant Sci. 2016 Nov 24;7:1759. doi: 10.3389/fpls.2016.01759. eCollection 2016.

引用本文的文献

1
Analysis of salivary proteins in gall-inducing psylla and their potential influence on host plants.
BMC Genomics. 2025 Aug 28;26(1):786. doi: 10.1186/s12864-025-11958-3.
2
Plant immunity to insect herbivores: mechanisms, interactions, and innovations for sustainable pest management.
Front Plant Sci. 2025 Jul 22;16:1599450. doi: 10.3389/fpls.2025.1599450. eCollection 2025.
4
Impact of Lepidopteran Oral Secretions on the Transcriptome of .
Plant Direct. 2025 Jun 19;9(6):e70085. doi: 10.1002/pld3.70085. eCollection 2025 Jun.
7
Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review.
Front Plant Sci. 2025 Jan 20;15:1492424. doi: 10.3389/fpls.2024.1492424. eCollection 2024.
10
Silencing Gene with dsRNA of Different Lengths Impairs Larval Development in .
Insects. 2024 Dec 17;15(12):1000. doi: 10.3390/insects15121000.

本文引用的文献

1
Vector development and vitellogenin determine the transovarial transmission of begomoviruses.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6746-6751. doi: 10.1073/pnas.1701720114. Epub 2017 Jun 12.
2
A Salivary Endo-β-1,4-Glucanase Acts as an Effector That Enables the Brown Planthopper to Feed on Rice.
Plant Physiol. 2017 Mar;173(3):1920-1932. doi: 10.1104/pp.16.01493. Epub 2017 Jan 26.
3
An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.
Plant Physiol. 2017 Mar;173(3):1892-1903. doi: 10.1104/pp.16.01458. Epub 2017 Jan 18.
8
Hemipteran and dipteran pests: Effectors and plant host immune regulators.
J Integr Plant Biol. 2016 Apr;58(4):350-61. doi: 10.1111/jipb.12438. Epub 2015 Dec 1.
9
A Secreted MIF Cytokine Enables Aphid Feeding and Represses Plant Immune Responses.
Curr Biol. 2015 Jul 20;25(14):1898-903. doi: 10.1016/j.cub.2015.05.047. Epub 2015 Jun 25.
10
Armet is an effector protein mediating aphid-plant interactions.
FASEB J. 2015 May;29(5):2032-45. doi: 10.1096/fj.14-266023. Epub 2015 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验