Suppr超能文献

开发、验证和整合计算模型以识别雄激素活性化学物质。

Development, validation and integration of in silico models to identify androgen active chemicals.

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via G. La Masa 19, 20156, Milan, Italy.

National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, TN 37830, USA; Integrated Laboratory Systems, Inc., 601 Keystone Dr, Morrisville, NC 27650, USA.

出版信息

Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.

Abstract

Humans are exposed to large numbers of environmental chemicals, some of which potentially interfere with the endocrine system. The identification of potential endocrine disrupting chemicals (EDCs) has gained increasing priority in the assessment of environmental hazards. The U.S. Environmental Protection Agency (U.S. EPA) has developed the Endocrine Disruptor Screening Program (EDSP) which aims to prioritize and screen potential EDCs. The Toxicity Forecaster (ToxCast) program has generated data using in vitro high-throughput screening (HTS) assays measuring activity of chemicals at multiple points along the androgen receptor (AR) activity pathway. In the present study, using a large and diverse data set of 1667 chemicals provided by the U.S. EPA from the combined ToxCast AR assays in the framework of the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA). Two models were built using ADMET Predictor™; one is based on Artificial Neural Networks (ANNs) technology and the other uses a Support Vector Machine (SVM) algorithm; one model is a Decision Tree (DT) developed in R; and two models make use of differently combined sets of structural alerts (SAs) automatically extracted by SARpy. We used two strategies to integrate predictions from single models; one is based on a majority vote approach and the other on prediction convergence. These strategies led to enhanced statistical performance in most cases. Moreover, the majority vote approach improved prediction coverage when one or more single models were not able to provide any estimations. This study integrates multiple in silico approaches as a virtual screening tool for use in risk assessment of endocrine disrupting chemicals.

摘要

人类暴露于大量环境化学物质中,其中一些可能会干扰内分泌系统。因此,在环境危害评估中,鉴定潜在的内分泌干扰化学物质(EDCs)的优先级日益提高。美国环境保护署(U.S. EPA)制定了内分泌干扰物筛选计划(EDSP),旨在对潜在的 EDCs 进行优先级排序和筛选。毒性预测器(ToxCast)计划使用体外高通量筛选(HTS)测定化学物质在雄激素受体(AR)活性途径上多个点的活性,生成了数据。在本研究中,使用了美国环境保护署(U.S. EPA)提供的来自 ToxCast AR 测定的大量和多样化的数据集,该数据集来自于雄激素受体活性合作建模项目(CoMPARA)框架下的联合测定。使用 ADMET PredictorTM 构建了两个模型;一个基于人工神经网络(ANNs)技术,另一个使用支持向量机(SVM)算法;一个模型是在 R 中开发的决策树(DT);还有两个模型利用 SARpy 自动提取的不同组合的结构警报(SAs)。我们使用了两种策略来整合来自单一模型的预测,一种是基于多数票方法,另一种是基于预测收敛性。在大多数情况下,这些策略提高了统计性能。此外,当一个或多个单一模型无法提供任何估计时,多数票方法提高了预测覆盖率。本研究整合了多种计算方法作为一种虚拟筛选工具,用于内分泌干扰化学物质的风险评估。

相似文献

1
Development, validation and integration of in silico models to identify androgen active chemicals.
Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.
2
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
3
Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals.
Environ Health Perspect. 2013 Jan;121(1):7-14. doi: 10.1289/ehp.1205065. Epub 2012 Sep 28.
5
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.
6
Weight of evidence for cross-species conservation of androgen receptor-based biological activity.
Toxicol Sci. 2023 May 31;193(2):131-145. doi: 10.1093/toxsci/kfad038.
7
Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
Ecotoxicol Environ Saf. 2014 Dec;110:280-7. doi: 10.1016/j.ecoenv.2014.08.026. Epub 2014 Oct 3.
9
Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.
Environ Sci Technol. 2015 Jul 21;49(14):8804-14. doi: 10.1021/acs.est.5b02641. Epub 2015 Jun 26.
10
Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project.
J Chem Inf Model. 2019 May 28;59(5):1839-1848. doi: 10.1021/acs.jcim.8b00794. Epub 2019 Feb 11.

引用本文的文献

1
Prediction model for milk transfer of drugs by primarily evaluating the area under the curve using QSAR/QSPR.
Pharm Res. 2023 Mar;40(3):711-719. doi: 10.1007/s11095-023-03477-1. Epub 2023 Jan 31.
2
Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening.
Front Toxicol. 2022 Sep 20;4:981928. doi: 10.3389/ftox.2022.981928. eCollection 2022.
3
Review of studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns.
Front Endocrinol (Lausanne). 2022 Sep 13;13:986016. doi: 10.3389/fendo.2022.986016. eCollection 2022.
4
In Silico Models for Skin Sensitization and Irritation.
Methods Mol Biol. 2022;2425:291-354. doi: 10.1007/978-1-0716-1960-5_13.
7
QSAR Models for Human Carcinogenicity: An Assessment Based on Oral and Inhalation Slope Factors.
Molecules. 2020 Dec 29;26(1):127. doi: 10.3390/molecules26010127.
8
Comparison of Machine Learning Models for the Androgen Receptor.
Environ Sci Technol. 2020 Nov 3;54(21):13690-13700. doi: 10.1021/acs.est.0c03984. Epub 2020 Oct 21.
9
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
10
Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study.
J Chem Inf Model. 2020 Mar 23;60(3):1215-1223. doi: 10.1021/acs.jcim.9b01057. Epub 2020 Mar 2.

本文引用的文献

1
Integrated strategy for mutagenicity prediction applied to food contact chemicals.
ALTEX. 2018;35(2):169-178. doi: 10.14573/altex.1707171. Epub 2017 Sep 18.
3
Development and Validation of a Computational Model for Androgen Receptor Activity.
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.
5
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Chem Res Toxicol. 2016 Aug 15;29(8):1225-51. doi: 10.1021/acs.chemrestox.6b00135. Epub 2016 Jul 20.
6
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.
Environ Health Perspect. 2016 Jul;124(7):1023-33. doi: 10.1289/ehp.1510267. Epub 2016 Feb 23.
7
Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data.
Future Med Chem. 2015;7(14):1921-36. doi: 10.4155/fmc.15.103. Epub 2015 Oct 6.
10
Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction.
SAR QSAR Environ Res. 2013;24(5):365-83. doi: 10.1080/1062936X.2013.773376. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验