Suppr超能文献

表观遗传沉默的 miRNA-338-5p 和 miRNA-421 驱动 SPINK1 阳性前列腺癌。

Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer.

机构信息

Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.

Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, Michigan.

出版信息

Clin Cancer Res. 2019 May 1;25(9):2755-2768. doi: 10.1158/1078-0432.CCR-18-3230. Epub 2018 Dec 26.

Abstract

PURPOSE

Serine peptidase inhibitor, Kazal type-1 (SPINK1) overexpression defines the second most recurrent and aggressive prostate cancer subtype. However, the underlying molecular mechanism and pathobiology of SPINK1 in prostate cancer remains largely unknown.

EXPERIMENTAL DESIGN

miRNA prediction tools were employed to examine the 3'UTR for miRNA binding. Luciferase reporter assays were performed to confirm the 3'UTR binding of shortlisted miR-338-5p/miR-421. Furthermore, miR-338-5p/-421-overexpressing cancer cells (SPINK1-positive) were evaluated for oncogenic properties using cell-based functional assays and a mouse xenograft model. Global gene expression profiling was performed to unravel the biological pathways altered by miR-338-5p/-421. IHC and RNA hybridization were carried out on prostate cancer patients' tissue microarray for SPINK1 and expression, respectively. Chromatin immunoprecipitation assay was performed to examine EZH2 occupancy on the miR-338-5p/-421-regulatory regions. Bisulfite sequencing and methylated DNA immunoprecipitation were performed on prostate cancer cell lines and patients' specimens.

RESULTS

We established a critical role of miRNA-338-5p/-421 in posttranscriptional regulation of . Ectopic expression of miRNA-338-5p/-421 in SPINK1-positive cells abrogates oncogenic properties including cell-cycle progression, stemness, and drug resistance, and shows reduced tumor burden and distant metastases in a mouse model. Importantly, we show that patients with SPINK1-positive prostate cancer exhibit increased EZH2 expression, suggesting its role in epigenetic silencing of miRNA-338-5p/-421. Furthermore, presence of CpG dinucleotide DNA methylation marks on the regulatory regions of miR-338-5p/-421 in SPINK1-positive prostate cancer cells and patients' specimens confirms epigenetic silencing.

CONCLUSIONS

Our findings revealed that miRNA-338-5p/-421 are epigenetically silenced in SPINK1-positive prostate cancer, although restoring the expression of these miRNAs using epigenetic drugs or synthetic mimics could abrogate SPINK1-mediated oncogenesis..

摘要

目的

丝氨酸肽酶抑制剂,Kazal 型 1(SPINK1)过表达定义了第二常见且侵袭性最强的前列腺癌亚型。然而,SPINK1 在前列腺癌中的潜在分子机制和病理生物学仍知之甚少。

实验设计

使用 miRNA 预测工具来检查 3'UTR 上的 miRNA 结合位点。进行荧光素酶报告基因检测以确认短名单中的 miR-338-5p/miR-421 与 3'UTR 的结合。此外,使用基于细胞的功能测定和小鼠异种移植模型评估过表达 miR-338-5p/-421 的癌细胞(SPINK1 阳性)的致癌特性。进行全基因表达谱分析以揭示 miR-338-5p/-421 改变的生物学途径。对前列腺癌患者组织微阵列进行免疫组织化学和 RNA 杂交,分别检测 SPINK1 和 表达。进行染色质免疫沉淀测定以检查 EZH2 在 miR-338-5p/-421 调节区域的占据。对前列腺癌细胞系和患者标本进行亚硫酸氢盐测序和甲基化 DNA 免疫沉淀。

结果

我们确立了 miRNA-338-5p/-421 在 的转录后调控中的关键作用。在 SPINK1 阳性细胞中外源性表达 miR-338-5p/-421 可消除包括细胞周期进展、干性和耐药性在内的致癌特性,并在小鼠模型中显示出肿瘤负担和远处转移的减少。重要的是,我们表明 SPINK1 阳性前列腺癌患者表现出 EZH2 表达增加,表明其在 miR-338-5p/-421 的表观遗传沉默中起作用。此外,在 SPINK1 阳性前列腺癌细胞和患者标本的调节区域存在 CpG 二核苷酸 DNA 甲基化标记证实了表观遗传沉默。

结论

我们的研究结果表明,miR-338-5p/-421 在 SPINK1 阳性前列腺癌中被表观遗传沉默,尽管使用表观遗传药物或合成模拟物恢复这些 miRNA 的表达可以消除 SPINK1 介导的致癌作用。

相似文献

1
Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer.
Clin Cancer Res. 2019 May 1;25(9):2755-2768. doi: 10.1158/1078-0432.CCR-18-3230. Epub 2018 Dec 26.
4
New Hope in Prostate Cancer Precision Medicine? miRNA Replacement and Epigenetics.
Clin Cancer Res. 2019 May 1;25(9):2679-2681. doi: 10.1158/1078-0432.CCR-19-0061. Epub 2019 Feb 26.
6
Promoter Methylation-mediated Silencing of the MiR-192-5p Promotes Endometrial Cancer Progression by Targeting ALX1.
Int J Med Sci. 2021 Apr 26;18(12):2510-2520. doi: 10.7150/ijms.58954. eCollection 2021.
7
miR-26a-5p restoration EZH2 silencing blocks the IL-6/STAT3 axis to repress the growth of prostate cancer.
Expert Opin Ther Targets. 2023 Jul-Dec;27(12):1285-1297. doi: 10.1080/14728222.2023.2293750. Epub 2023 Dec 30.
10
miR-483-5p promotes prostate cancer cell proliferation and invasion by targeting RBM5.
Int Braz J Urol. 2017 Nov-Dec;43(6):1060-1067. doi: 10.1590/S1677-5538.IBJU.2016.0595.

引用本文的文献

1
circTP63 promotes prostate cancer progression via miR-421/VAMP associated protein A axis.
J Cancer. 2024 Aug 19;15(16):5451-5461. doi: 10.7150/jca.99561. eCollection 2024.
2
MiR-338-5p, a novel metastasis-related miRNA, inhibits triple-negative breast cancer progression by targeting the ETS1/NOTCH1 axis.
Heliyon. 2024 Jul 20;10(15):e34949. doi: 10.1016/j.heliyon.2024.e34949. eCollection 2024 Aug 15.
3
Meeting proceedings of the 43rd Indian Association for Cancer Research (IACR).
Biol Open. 2024 Aug 15;13(8). doi: 10.1242/bio.061613. Epub 2024 Aug 14.
4
Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives.
Signal Transduct Target Ther. 2024 Aug 2;9(1):192. doi: 10.1038/s41392-024-01885-2.
6
Targeting MALAT1 Augments Sensitivity to PARP Inhibition by Impairing Homologous Recombination in Prostate Cancer.
Cancer Res Commun. 2023 Oct 9;3(10):2044-2061. doi: 10.1158/2767-9764.CRC-23-0089.
7
The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach.
Cancers (Basel). 2023 Aug 9;15(16):4027. doi: 10.3390/cancers15164027.
8
NPAS2 promotes aerobic glycolysis and tumor growth in prostate cancer through HIF-1A signaling.
BMC Cancer. 2023 Mar 28;23(1):280. doi: 10.1186/s12885-023-10685-w.
10
Cancer Stem Cells-The Insight into Non-Coding RNAs.
Cells. 2022 Nov 21;11(22):3699. doi: 10.3390/cells11223699.

本文引用的文献

1
The long tail of oncogenic drivers in prostate cancer.
Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
2
Aberrant Activation of a Gastrointestinal Transcriptional Circuit in Prostate Cancer Mediates Castration Resistance.
Cancer Cell. 2017 Dec 11;32(6):792-806.e7. doi: 10.1016/j.ccell.2017.10.008. Epub 2017 Nov 16.
3
Molecular Discriminators of Racial Disparities in Prostate Cancer.
Trends Cancer. 2016 Mar;2(3):116-120. doi: 10.1016/j.trecan.2016.01.005. Epub 2016 Feb 11.
4
Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers.
Cancer Cell. 2017 Apr 10;31(4):576-590.e8. doi: 10.1016/j.ccell.2017.03.004.
5
Targeting noncoding RNAs in disease.
J Clin Invest. 2017 Mar 1;127(3):761-771. doi: 10.1172/JCI84424.
7
A transcriptional target of androgen receptor, miR-421 regulates proliferation and metabolism of prostate cancer cells.
Int J Biochem Cell Biol. 2016 Apr;73:30-40. doi: 10.1016/j.biocel.2016.01.018. Epub 2016 Jan 28.
8
Emerging Roles of SPINK1 in Cancer.
Clin Chem. 2016 Mar;62(3):449-57. doi: 10.1373/clinchem.2015.241513. Epub 2015 Dec 11.
9
The Molecular Taxonomy of Primary Prostate Cancer.
Cell. 2015 Nov 5;163(4):1011-25. doi: 10.1016/j.cell.2015.10.025.
10
SPINK1 promotes colorectal cancer progression by downregulating Metallothioneins expression.
Oncogenesis. 2015 Aug 10;4(8):e162. doi: 10.1038/oncsis.2015.23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验