Suppr超能文献

1000例炎症性肠病项目:1000例炎症性肠病患者的多组学数据;数据版本1

The 1000IBD project: multi-omics data of 1000 inflammatory bowel disease patients; data release 1.

作者信息

Imhann Floris, Van der Velde K J, Barbieri R, Alberts R, Voskuil M D, Vich Vila A, Collij V, Spekhorst L M, Van der Sloot K W J, Peters V, Van Dullemen H M, Visschedijk M C, Festen E A M, Swertz M A, Dijkstra G, Weersma R K

机构信息

Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, PO Box 30.001, 9700RB, Groningen, the Netherlands.

Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.

出版信息

BMC Gastroenterol. 2019 Jan 8;19(1):5. doi: 10.1186/s12876-018-0917-5.

Abstract

BACKGROUND

Inflammatory bowel disease (IBD) is a chronic complex disease of the gastrointestinal tract. Patients with IBD can experience a wide range of symptoms, but the pathophysiological mechanisms that cause these individual differences in clinical presentation remain largely unknown. In consequence, IBD is currently classified into subtypes using clinical characteristics. If we are to develop a more targeted treatment approach, molecular subtypes of IBD need to be discovered that can be used as new drug targets. To achieve this, we need multiple layers of molecular data generated from the same IBD patients.

CONSTRUCTION AND CONTENT

We initiated the 1000IBD project ( https://1000ibd.org ) to prospectively follow more than 1000 IBD patients from the Northern provinces of the Netherlands. For these patients, we have collected a uniquely large number of phenotypes and generated multi-omics profiles. To date, 1215 participants have been enrolled in the project and enrolment is on-going. Phenotype data collected for these participants includes information on dietary and environmental factors, drug responses and adverse drug events. Genome information has been generated using genotyping (ImmunoChip, Global Screening Array and HumanExomeChip) and sequencing (whole exome sequencing and targeted resequencing of IBD susceptibility loci), transcriptome information generated using RNA-sequencing of intestinal biopsies and microbiome information generated using both sequencing of the 16S rRNA gene and whole genome shotgun metagenomic sequencing.

UTILITY AND DISCUSSION

All molecular data generated within the 1000IBD project will be shared on the European Genome-Phenome Archive ( https://ega-archive.org , accession no: EGAS00001002702). The first data release, detailed in this announcement and released simultaneously with this publication, will contain basic phenotypes for 1215 participants, genotypes of 314 participants and gut microbiome data from stool samples (315 participants) and biopsies (107 participants) generated by tag sequencing the 16S gene. Future releases will comprise many more additional phenotypes and -omics data layers. 1000IBD data can be used by other researchers as a replication cohort, a dataset to test new software tools, or a dataset for applying new statistical models.

CONCLUSIONS

We report on the establishment and future development of the 1000IBD project: the first comprehensive multi-omics dataset aimed at discovering IBD biomarker profiles and treatment targets.

摘要

背景

炎症性肠病(IBD)是一种胃肠道慢性复杂疾病。IBD患者会出现多种症状,但导致这些临床表现个体差异的病理生理机制仍 largely未知。因此,目前IBD是根据临床特征进行亚型分类。如果我们要开发更具针对性的治疗方法,就需要发现可作为新药靶点的IBD分子亚型。要实现这一点,我们需要从同一IBD患者中获取多层分子数据。

构建与内容

我们启动了1000IBD项目(https://1000ibd.org),对来自荷兰北部省份的1000多名IBD患者进行前瞻性跟踪。对于这些患者,我们收集了数量独特的大量表型数据并生成了多组学图谱。截至目前,该项目已招募了1215名参与者,招募工作仍在进行中。为这些参与者收集的表型数据包括饮食和环境因素、药物反应及药物不良事件等信息。已通过基因分型(免疫芯片、全球筛查阵列和人类外显子芯片)和测序(全外显子测序以及IBD易感基因座的靶向重测序)生成基因组信息,通过对肠道活检样本进行RNA测序生成转录组信息,并通过16S rRNA基因测序和全基因组鸟枪法宏基因组测序生成微生物组信息。

实用性与讨论

1000IBD项目生成的所有分子数据将在欧洲基因组 - 表型档案库(https://ega - archive.org,登录号:EGAS00001002702)上共享。本次公告详细介绍并与本出版物同时发布的首次数据发布,将包含1215名参与者的基本表型、314名参与者的基因型以及通过16S基因标签测序从粪便样本(315名参与者)和活检样本(107名参与者)中获得的肠道微生物组数据。未来的发布将包含更多额外的表型和组学数据层。1000IBD数据可供其他研究人员用作复制队列、测试新软件工具的数据集或应用新统计模型的数据集。

结论

我们报告了1000IBD项目的建立及未来发展情况:这是首个旨在发现IBD生物标志物图谱和治疗靶点的全面多组学数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验