Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States of America.
Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America.
PLoS Comput Biol. 2019 Jan 9;15(1):e1006644. doi: 10.1371/journal.pcbi.1006644. eCollection 2019 Jan.
S. aureus is classified as a serious threat pathogen and is a priority that guides the discovery and development of new antibiotics. Despite growing knowledge of S. aureus metabolic capabilities, our understanding of its systems-level responses to different media types remains incomplete. Here, we develop a manually reconstructed genome-scale model (GEM-PRO) of metabolism with 3D protein structures for S. aureus USA300 str. JE2 containing 854 genes, 1,440 reactions, 1,327 metabolites and 673 3-dimensional protein structures. Computations were in 85% agreement with gene essentiality data from random barcode transposon site sequencing (RB-TnSeq) and 68% agreement with experimental physiological data. Comparisons of computational predictions with experimental observations highlight: 1) cases of non-essential biomass precursors; 2) metabolic genes subject to transcriptional regulation involved in Staphyloxanthin biosynthesis; 3) the essentiality of purine and amino acid biosynthesis in synthetic physiological media; and 4) a switch to aerobic fermentation upon exposure to extracellular glucose elucidated as a result of integrating time-course of quantitative exo-metabolomics data. An up-to-date GEM-PRO thus serves as a knowledge-based platform to elucidate S. aureus' metabolic response to its environment.
金黄色葡萄球菌被归类为严重威胁病原体,是指导新型抗生素发现和开发的优先事项。尽管人们对金黄色葡萄球菌代谢能力的了解不断增加,但我们对其系统水平对不同介质类型的反应的理解仍不完整。在这里,我们为 S. aureus USA300 str. JE2 构建了一个手动重建的基因组规模代谢模型 (GEM-PRO),该模型包含 854 个基因、1440 个反应、1327 个代谢物和 673 个三维蛋白质结构。计算结果与随机条码转座子测序 (RB-TnSeq) 的基因必需性数据有 85%的一致性,与实验生理数据有 68%的一致性。计算预测与实验观察结果的比较突出了以下几点:1)非必需生物质前体的情况;2)参与金黄色素生物合成的受转录调控的代谢基因;3)在合成生理培养基中嘌呤和氨基酸生物合成的必需性;4)由于整合了定量外代谢组学数据的时间过程,在暴露于细胞外葡萄糖时会发生有氧发酵。因此,最新的 GEM-PRO 可作为一个基于知识的平台,阐明金黄色葡萄球菌对其环境的代谢反应。