Department of Pediatrics, University of Florida, Gainesville, Florida.
Department of Clinical Sciences Malmö, Lund University, Skåne University Hospital SUS, Malmö, Sweden.
Pediatr Diabetes. 2019 May;20(3):263-270. doi: 10.1111/pedi.12812. Epub 2019 Jan 29.
The capacity to precisely predict progression to type 1 diabetes (T1D) in young children over a short time span is an unmet need. We sought to develop a risk algorithm to predict progression in children with high-risk human leukocyte antigen (HLA) genes followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study.
Logistic regression and 4-fold cross-validation examined 38 candidate predictors of risk from clinical, immunologic, metabolic, and genetic data. TEDDY subjects with at least one persistent, confirmed autoantibody at age 3 were analyzed with progression to T1D by age 6 serving as the primary endpoint. The logistic regression prediction model was compared to two non-statistical predictors, multiple autoantibody status, and presence of insulinoma-associated-2 autoantibodies (IA-2A).
A total of 363 subjects had at least one autoantibody at age 3. Twenty-one percent of subjects developed T1D by age 6. Logistic regression modeling identified 5 significant predictors - IA-2A status, hemoglobin A1c, body mass index Z-score, single-nucleotide polymorphism rs12708716_G, and a combination marker of autoantibody number plus fasting insulin level. The logistic model yielded a receiver operating characteristic area under the curve (AUC) of 0.80, higher than the two other predictors; however, the differences in AUC, sensitivity, and specificity were small across models.
This study highlights the application of precision medicine techniques to predict progression to diabetes over a 3-year window in TEDDY subjects. This multifaceted model provides preliminary improvement in prediction over simpler prediction tools. Additional tools are needed to maximize the predictive value of these approaches.
在短时间内准确预测儿童期发生 1 型糖尿病(T1D)的进展是一个尚未满足的需求。我们试图开发一种风险算法,以预测在环境决定糖尿病发生的年轻人(TEDDY)研究中具有高危人类白细胞抗原(HLA)基因的儿童的进展。
逻辑回归和 4 倍交叉验证检查了 38 个候选预测指标,这些指标来自临床、免疫、代谢和遗传数据。TEDDY 研究中,至少有一个持续存在、确证的自身抗体的受试者在 3 岁时进行分析,主要终点是 6 岁时进展为 T1D。逻辑回归预测模型与两种非统计预测指标,即多种自身抗体状态和胰岛素瘤相关-2 自身抗体(IA-2A)进行了比较。
共有 363 名受试者在 3 岁时有至少一种自身抗体。21%的受试者在 6 岁时发生 T1D。逻辑回归模型确定了 5 个有意义的预测指标-IA-2A 状态、糖化血红蛋白、体重指数 Z 分数、单核苷酸多态性 rs12708716_G 以及自身抗体数量加空腹胰岛素水平的组合标志物。逻辑模型的接收者操作特征曲线(AUC)下面积为 0.80,高于其他两个预测指标;然而,在不同的模型中,AUC、敏感性和特异性的差异较小。
本研究强调了精准医学技术在 TEDDY 受试者中预测 3 年内糖尿病进展的应用。这种多方面的模型提供了比简单预测工具更初步的预测改善。需要额外的工具来最大限度地提高这些方法的预测价值。