Suppr超能文献

预测 TEDDY 儿童在 3 至 6 岁时从胰岛自身抗体阳性进展为 1 型糖尿病。

Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children.

机构信息

Department of Pediatrics, University of Florida, Gainesville, Florida.

Department of Clinical Sciences Malmö, Lund University, Skåne University Hospital SUS, Malmö, Sweden.

出版信息

Pediatr Diabetes. 2019 May;20(3):263-270. doi: 10.1111/pedi.12812. Epub 2019 Jan 29.

Abstract

OBJECTIVE

The capacity to precisely predict progression to type 1 diabetes (T1D) in young children over a short time span is an unmet need. We sought to develop a risk algorithm to predict progression in children with high-risk human leukocyte antigen (HLA) genes followed in The Environmental Determinants of Diabetes in the Young (TEDDY) study.

METHODS

Logistic regression and 4-fold cross-validation examined 38 candidate predictors of risk from clinical, immunologic, metabolic, and genetic data. TEDDY subjects with at least one persistent, confirmed autoantibody at age 3 were analyzed with progression to T1D by age 6 serving as the primary endpoint. The logistic regression prediction model was compared to two non-statistical predictors, multiple autoantibody status, and presence of insulinoma-associated-2 autoantibodies (IA-2A).

RESULTS

A total of 363 subjects had at least one autoantibody at age 3. Twenty-one percent of subjects developed T1D by age 6. Logistic regression modeling identified 5 significant predictors - IA-2A status, hemoglobin A1c, body mass index Z-score, single-nucleotide polymorphism rs12708716_G, and a combination marker of autoantibody number plus fasting insulin level. The logistic model yielded a receiver operating characteristic area under the curve (AUC) of 0.80, higher than the two other predictors; however, the differences in AUC, sensitivity, and specificity were small across models.

CONCLUSIONS

This study highlights the application of precision medicine techniques to predict progression to diabetes over a 3-year window in TEDDY subjects. This multifaceted model provides preliminary improvement in prediction over simpler prediction tools. Additional tools are needed to maximize the predictive value of these approaches.

摘要

目的

在短时间内准确预测儿童期发生 1 型糖尿病(T1D)的进展是一个尚未满足的需求。我们试图开发一种风险算法,以预测在环境决定糖尿病发生的年轻人(TEDDY)研究中具有高危人类白细胞抗原(HLA)基因的儿童的进展。

方法

逻辑回归和 4 倍交叉验证检查了 38 个候选预测指标,这些指标来自临床、免疫、代谢和遗传数据。TEDDY 研究中,至少有一个持续存在、确证的自身抗体的受试者在 3 岁时进行分析,主要终点是 6 岁时进展为 T1D。逻辑回归预测模型与两种非统计预测指标,即多种自身抗体状态和胰岛素瘤相关-2 自身抗体(IA-2A)进行了比较。

结果

共有 363 名受试者在 3 岁时有至少一种自身抗体。21%的受试者在 6 岁时发生 T1D。逻辑回归模型确定了 5 个有意义的预测指标-IA-2A 状态、糖化血红蛋白、体重指数 Z 分数、单核苷酸多态性 rs12708716_G 以及自身抗体数量加空腹胰岛素水平的组合标志物。逻辑模型的接收者操作特征曲线(AUC)下面积为 0.80,高于其他两个预测指标;然而,在不同的模型中,AUC、敏感性和特异性的差异较小。

结论

本研究强调了精准医学技术在 TEDDY 受试者中预测 3 年内糖尿病进展的应用。这种多方面的模型提供了比简单预测工具更初步的预测改善。需要额外的工具来最大限度地提高这些方法的预测价值。

相似文献

1
Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children.
Pediatr Diabetes. 2019 May;20(3):263-270. doi: 10.1111/pedi.12812. Epub 2019 Jan 29.
2
Predicting Islet Cell Autoimmunity and Type 1 Diabetes: An 8-Year TEDDY Study Progress Report.
Diabetes Care. 2019 Jun;42(6):1051-1060. doi: 10.2337/dc18-2282. Epub 2019 Apr 9.
5
Hierarchical Order of Distinct Autoantibody Spreading and Progression to Type 1 Diabetes in the TEDDY Study.
Diabetes Care. 2020 Sep;43(9):2066-2073. doi: 10.2337/dc19-2547. Epub 2020 Jul 8.
6
Dynamics of Islet Autoantibodies During Prospective Follow-Up From Birth to Age 15 Years.
J Clin Endocrinol Metab. 2020 Dec 1;105(12):e4638-51. doi: 10.1210/clinem/dgaa624.
8
Characterisation of rapid progressors to type 1 diabetes among children with HLA-conferred disease susceptibility.
Diabetologia. 2017 Jul;60(7):1284-1293. doi: 10.1007/s00125-017-4258-7. Epub 2017 Mar 31.
9
Identical and Nonidentical Twins: Risk and Factors Involved in Development of Islet Autoimmunity and Type 1 Diabetes.
Diabetes Care. 2019 Feb;42(2):192-199. doi: 10.2337/dc18-0288. Epub 2018 Jul 30.

引用本文的文献

1
Therapeutic potential of anti-thymocyte globulin in type 1 diabetes: A systematic review.
PLoS One. 2025 May 13;20(5):e0323642. doi: 10.1371/journal.pone.0323642. eCollection 2025.
3
2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2025.
Diabetes Care. 2025 Jan 1;48(Supplement_1):S27-S49. doi: 10.2337/dc25-S002.
4
Identification of type 1 diabetes risk phenotypes using an outcome-guided clustering analysis.
Diabetologia. 2024 Nov;67(11):2507-2517. doi: 10.1007/s00125-024-06246-w. Epub 2024 Aug 6.
5
Data-Driven Phenotyping of Presymptomatic Type 1 Diabetes Using Longitudinal Autoantibody Profiles.
Diabetes Care. 2024 Aug 1;47(8):1424-1431. doi: 10.2337/dc24-0198.
8
2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024.
Diabetes Care. 2024 Jan 1;47(Suppl 1):S20-S42. doi: 10.2337/dc24-S002.
9
Type 1 Diabetes Risk Phenotypes Using Cluster Analysis.
medRxiv. 2023 Oct 12:2023.10.10.23296375. doi: 10.1101/2023.10.10.23296375.

本文引用的文献

2
Excess BMI in Childhood: A Modifiable Risk Factor for Type 1 Diabetes Development?
Diabetes Care. 2017 May;40(5):698-701. doi: 10.2337/dc16-2331. Epub 2017 Feb 15.
3
Dysregulation of glucose metabolism in preclinical type 1 diabetes.
Pediatr Diabetes. 2016 Jul;17 Suppl 22:25-30. doi: 10.1111/pedi.12392.
4
Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention.
Pediatr Diabetes. 2015 Nov;16(7):465-84. doi: 10.1111/pedi.12299. Epub 2015 Jul 23.
5
Predicting type 1 diabetes using biomarkers.
Diabetes Care. 2015 Jun;38(6):989-96. doi: 10.2337/dc15-0101.
7
HbA1c Predicts Time to Diagnosis of Type 1 Diabetes in Children at Risk.
Diabetes. 2015 May;64(5):1719-27. doi: 10.2337/db14-0497. Epub 2014 Dec 18.
8
Role of Type 1 Diabetes-Associated SNPs on Risk of Autoantibody Positivity in the TEDDY Study.
Diabetes. 2015 May;64(5):1818-29. doi: 10.2337/db14-1497. Epub 2014 Nov 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验