Suppr超能文献

噬菌体裂解:多种基因对应多种障碍。

Phage Lysis: Multiple Genes for Multiple Barriers.

机构信息

Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.

Department of Biochemistry & Biophysics, Center of Phage Technology, Texas A&M University, College Station, TX, United States.

出版信息

Adv Virus Res. 2019;103:33-70. doi: 10.1016/bs.aivir.2018.09.003. Epub 2018 Nov 28.

Abstract

The first steps in phage lysis involve a temporally controlled permeabilization of the cytoplasmic membrane followed by enzymatic degradation of the peptidoglycan. For Caudovirales of Gram-negative hosts, there are two different systems: the holin-endolysin and pinholin-SAR endolysin pathways. In the former, lysis is initiated when the holin forms micron-scale holes in the inner membrane, releasing active endolysin into the periplasm to degrade the peptidoglycan. In the latter, lysis begins when the pinholin causes depolarization of the membrane, which activates the secreted SAR endolysin. Historically, the disruption of the first two barriers of the cell envelope was thought to be necessary and sufficient for lysis of Gram-negative hosts. However, recently a third functional class of lysis proteins, the spanins, has been shown to be required for outer membrane disruption. Spanins are so named because they form a protein bridge that connects both membranes. Most phages produce a two-component spanin complex, composed of an outer membrane lipoprotein (o-spanin) and an inner membrane protein (i-spanin) with a predominantly coiled-coil periplasmic domain. Some phages have a different type of spanin which spans the periplasm as a single molecule, by virtue of an N-terminal lipoprotein signal and a C-terminal transmembrane domain. Evidence is reviewed supporting a model in which the spanins function by fusing the inner membrane and outer membrane. Moreover, it is proposed that spanin function is inhibited by the meshwork of the peptidoglycan, thus coupling the spanin step to the first two steps mediated by the holin and endolysin.

摘要

噬菌体裂解的第一步涉及细胞质膜的暂时控制通透性,随后是肽聚糖的酶降解。对于革兰氏阴性宿主的长尾病毒科,有两种不同的系统:溶菌素-内溶素和穿孔素-SAR 内溶素途径。在前一种途径中,当溶菌素在内膜上形成微米级别的孔时,裂解就开始了,将活性内溶素释放到周质中以降解肽聚糖。在后一种途径中,当穿孔素导致膜去极化时,裂解就开始了,这会激活分泌的 SAR 内溶素。从历史上看,细胞包膜的前两个屏障的破坏被认为是裂解革兰氏阴性宿主所必需和充分的。然而,最近发现了第三类功能裂解蛋白,即间隔蛋白,它们对于破坏外膜是必需的。间隔蛋白之所以得名,是因为它们形成了连接两个膜的蛋白质桥。大多数噬菌体产生一个由两部分组成的间隔蛋白复合物,由外膜脂蛋白(o-间隔蛋白)和内膜蛋白(i-间隔蛋白)组成,它们具有主要的卷曲螺旋周质域。一些噬菌体具有不同类型的间隔蛋白,通过 N 端脂蛋白信号和 C 端跨膜结构域,作为单个分子跨越周质。有证据支持这样一种模型,即间隔蛋白通过融合内膜和外膜来发挥作用。此外,有人提出,间隔蛋白的功能受到肽聚糖网格的抑制,从而将间隔蛋白步骤与溶菌素和内溶素介导的前两个步骤偶联起来。

相似文献

1
Phage Lysis: Multiple Genes for Multiple Barriers.
Adv Virus Res. 2019;103:33-70. doi: 10.1016/bs.aivir.2018.09.003. Epub 2018 Nov 28.
2
Phage lysis: three steps, three choices, one outcome.
J Microbiol. 2014 Mar;52(3):243-58. doi: 10.1007/s12275-014-4087-z. Epub 2014 Mar 1.
3
Localization and Regulation of the T1 Unimolecular Spanin.
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.00380-18. Print 2018 Nov 15.
4
Identifying components of the phage LambdaSo lysis system.
J Bacteriol. 2024 Jun 20;206(6):e0002224. doi: 10.1128/jb.00022-24. Epub 2024 May 21.
5
Endolysin Regulation in Phage Mu Lysis.
mBio. 2022 Jun 28;13(3):e0081322. doi: 10.1128/mbio.00813-22. Epub 2022 Apr 26.
6
Phage lysis: do we have the hole story yet?
Curr Opin Microbiol. 2013 Dec;16(6):790-7. doi: 10.1016/j.mib.2013.08.008. Epub 2013 Oct 8.
7
Membrane fusion during phage lysis.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5497-502. doi: 10.1073/pnas.1420588112. Epub 2015 Apr 13.
8
Phage spanins: diversity, topological dynamics and gene convergence.
BMC Bioinformatics. 2018 Sep 15;19(1):326. doi: 10.1186/s12859-018-2342-8.
9
The spanin complex is essential for lambda lysis.
J Bacteriol. 2012 Oct;194(20):5667-74. doi: 10.1128/JB.01245-12. Epub 2012 Aug 17.
10
Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts.
J Mol Biol. 2007 Nov 9;373(5):1098-112. doi: 10.1016/j.jmb.2007.08.045. Epub 2007 Aug 24.

引用本文的文献

1
A call for caution in the biological interpretation of viral auxiliary metabolic genes.
Nat Microbiol. 2025 Aug 27. doi: 10.1038/s41564-025-02095-4.
3
Armed Phages: A New Weapon in the Battle Against Antimicrobial Resistance.
Viruses. 2025 Jun 27;17(7):911. doi: 10.3390/v17070911.
4
Structural and Genetic Diversity of Lysis Modules in Bacteriophages Infecting the Genus .
Genes (Basel). 2025 Jul 19;16(7):842. doi: 10.3390/genes16070842.
5
Characterization and antimicrobial activity of a novel lytic phage vB_SmaS_QH16 against : , , and biofilm studies.
Front Cell Infect Microbiol. 2025 Jul 10;15:1610857. doi: 10.3389/fcimb.2025.1610857. eCollection 2025.
6
Characterization of holins, the membrane proteins of coliphage ASEC2201: a genomewide approach.
Front Microbiol. 2025 Jul 9;16:1550594. doi: 10.3389/fmicb.2025.1550594. eCollection 2025.
7
Genome Sequences of the First Phages Infecting Reveal Their Global Distribution and Metabolic Potential.
Microorganisms. 2025 Jun 6;13(6):1324. doi: 10.3390/microorganisms13061324.
9
Isolation and complete genome sequence of a novel Mycobacterium phage MS619.
Virus Genes. 2025 Jun 21. doi: 10.1007/s11262-025-02170-2.
10
Endolysins and membrane-active peptides: innovative engineering strategies against gram-negative bacteria.
Front Microbiol. 2025 Jun 3;16:1603380. doi: 10.3389/fmicb.2025.1603380. eCollection 2025.

本文引用的文献

1
Phage spanins: diversity, topological dynamics and gene convergence.
BMC Bioinformatics. 2018 Sep 15;19(1):326. doi: 10.1186/s12859-018-2342-8.
2
Localization and Regulation of the T1 Unimolecular Spanin.
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.00380-18. Print 2018 Nov 15.
3
A Cytoplasmic Antiholin Is Embedded In Frame with the Holin in a Lactobacillus fermentum Bacteriophage.
Appl Environ Microbiol. 2018 Mar 1;84(6). doi: 10.1128/AEM.02518-17. Print 2018 Mar 15.
5
A viral protein antibiotic inhibits lipid II flippase activity.
Nat Microbiol. 2017 Nov;2(11):1480-1484. doi: 10.1038/s41564-017-0023-4. Epub 2017 Sep 11.
6
Suppressor Analysis of the Fusogenic Lambda Spanins.
J Virol. 2017 Jun 26;91(14). doi: 10.1128/JVI.00413-17. Print 2017 Jul 15.
7
Genetic Analysis of the Lambda Spanins Rz and Rz1: Identification of Functional Domains.
G3 (Bethesda). 2017 Feb 9;7(2):741-753. doi: 10.1534/g3.116.037192.
8
Probing the function of the two holin-like proteins of bacteriophage SPP1.
Virology. 2017 Jan;500:184-189. doi: 10.1016/j.virol.2016.10.030. Epub 2016 Nov 5.
9
The Last r Locus Unveiled: T4 RIII Is a Cytoplasmic Antiholin.
J Bacteriol. 2016 Aug 25;198(18):2448-57. doi: 10.1128/JB.00294-16. Print 2016 Sep 15.
10
Membrane fusion during phage lysis.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5497-502. doi: 10.1073/pnas.1420588112. Epub 2015 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验