Suppr超能文献

预测和可视化CRISPR-Cas系统的特征。

Predicting and visualizing features of CRISPR-Cas systems.

作者信息

Nethery Matthew A, Barrangou Rodolphe

机构信息

Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.

Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.

出版信息

Methods Enzymol. 2019;616:1-25. doi: 10.1016/bs.mie.2018.10.016. Epub 2018 Dec 19.

Abstract

Pervasive application of CRISPR-Cas systems in genome editing has prompted an increase in both interest and necessity to further elucidate existing systems as well as discover putative novel systems. The ubiquity and power of current computational platforms have made in silico approaches to CRISPR-Cas identification and characterization accessible to a wider audience and increasingly amenable for processing extensive data sets. Here, we describe in silico methods for predicting and visualizing notable features of CRISPR-Cas systems, including Cas domain determination, CRISPR array visualization, and inference of the protospacer-adjacent motif. The efficiency of these tools enables rapid exploration of CRISPR-Cas diversity across prokaryotic genomes and supports scalable analysis of large genomic data sets.

摘要

CRISPR-Cas系统在基因组编辑中的广泛应用,促使人们对进一步阐明现有系统以及发现潜在新系统的兴趣和必要性都有所增加。当前计算平台的普遍性和强大功能,使得通过计算机方法进行CRISPR-Cas的识别和表征,能为更广泛的受众所用,并且越来越适合处理大量数据集。在此,我们描述了用于预测和可视化CRISPR-Cas系统显著特征的计算机方法,包括Cas结构域的确定、CRISPR阵列的可视化以及原间隔相邻基序的推断。这些工具的高效性能够快速探索原核生物基因组中CRISPR-Cas的多样性,并支持对大型基因组数据集进行可扩展分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验