Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
Department of Physics, University of Oxford, Oxford OX1 3PU, UK.
Science. 2019 Mar 22;363(6433). doi: 10.1126/science.aav8573. Epub 2019 Feb 7.
Fast inactivation of voltage-gated sodium (Na) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Na channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Na channels.
电压门控钠离子(Na)通道的快速失活对于电信号传递至关重要,但该机制仍知之甚少。本研究通过电子显微镜,以 3.5 埃的分辨率,分别解析了单独的真核 Na 通道和与其复合物(致死性 α-蝎毒素 AaH2)的结构。AaH2 楔入电压感应结构域 IV(VSD4),通过捕获失活状态来阻碍快速激活,在该状态下,门控电荷相互作用桥接到带负电荷的胞内羧基末端结构域。在没有 AaH2 的情况下,VSD4 的 S4 螺旋经历约 13 埃的平移,以松开胞内快速失活门控机制。突显了 α-蝎毒素的多药理学,AaH2 还靶向 VSD1 上一个意料之外的受体位点和 VSD4 附近的孔聚糖。总体而言,这项工作为 Na 通道的快速失活、机电耦联和致病变异提供了关键的见解。