Suppr超能文献

载氧化胆固醇纳米颗粒以临床相关剂量递送至肝脏微环境中的 mRNA。

Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA.

出版信息

Adv Mater. 2019 Apr;31(14):e1807748. doi: 10.1002/adma.201807748. Epub 2019 Feb 12.

Abstract

Using mRNA to produce therapeutic proteins is a promising approach to treat genetic diseases. However, systemically delivering mRNA to cell types besides hepatocytes remains challenging. Fast identification of nanoparticle delivery (FIND) is a DNA barcode-based system designed to measure how over 100 lipid nanoparticles (LNPs) deliver mRNA that functions in the cytoplasm of target cells in a single mouse. By using FIND to quantify how 75 chemically distinct LNPs delivered mRNA to 28 cell types in vivo, it is found that an LNP formulated with oxidized cholesterol and no targeting ligand delivers Cre mRNA, which edits DNA in hepatic endothelial cells and Kupffer cells at 0.05 mg kg . Notably, the LNP targets liver microenvironmental cells fivefold more potently than hepatocytes. The structure of the oxidized cholesterols added to the LNP is systematically varied to show that the position of the oxidative modification may be important; cholesterols modified on the hydrocarbon tail associated with sterol ring D tend to outperform cholesterols modified on sterol ring B. These data suggest that LNPs formulated with modified cholesterols can deliver gene-editing mRNA to the liver microenvironment at clinically relevant doses.

摘要

使用 mRNA 产生治疗性蛋白质是治疗遗传疾病的一种很有前途的方法。然而,将 mRNA 系统地递送到除肝细胞以外的细胞类型仍然具有挑战性。Fast identification of nanoparticle delivery (FIND) 是一种基于 DNA 条码的系统,旨在测量超过 100 种脂质纳米颗粒 (LNPs) 如何在单个小鼠的目标细胞细胞质中传递具有功能的 mRNA。通过使用 FIND 来量化 75 种化学上不同的 LNPs 如何将 mRNA 递送到体内的 28 种细胞类型,发现用氧化胆固醇和没有靶向配体的 LNP 递呈 Cre mRNA,可在 0.05 mg kg 时编辑肝内皮细胞和枯否细胞中的 DNA。值得注意的是,LNP 靶向肝脏微环境细胞的效力比肝细胞高五倍。系统地改变添加到 LNP 中的氧化胆固醇的结构表明,氧化修饰的位置可能很重要;与甾醇环 D 相关的烃尾上修饰的胆固醇往往优于甾醇环 B 上修饰的胆固醇。这些数据表明,用修饰的胆固醇制成的 LNPs 可以以临床相关剂量将基因编辑 mRNA 递送到肝脏微环境。

相似文献

1
Nanoparticles Containing Oxidized Cholesterol Deliver mRNA to the Liver Microenvironment at Clinically Relevant Doses.
Adv Mater. 2019 Apr;31(14):e1807748. doi: 10.1002/adma.201807748. Epub 2019 Feb 12.
2
Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery.
ACS Nano. 2018 Aug 28;12(8):8341-8349. doi: 10.1021/acsnano.8b03640. Epub 2018 Jul 20.
3
Mild Innate Immune Activation Overrides Efficient Nanoparticle-Mediated RNA Delivery.
Adv Mater. 2020 Jan;32(1):e1904905. doi: 10.1002/adma.201904905. Epub 2019 Nov 19.
4
Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.
J Control Release. 2019 Dec 28;316:404-417. doi: 10.1016/j.jconrel.2019.10.028. Epub 2019 Oct 31.
5
Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
Acc Chem Res. 2021 Dec 7;54(23):4283-4293. doi: 10.1021/acs.accounts.1c00550. Epub 2021 Nov 18.
6
Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo.
Nat Commun. 2022 Aug 15;13(1):4766. doi: 10.1038/s41467-022-32281-5.
7
High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo.
J Control Release. 2023 May;357:394-403. doi: 10.1016/j.jconrel.2023.04.005. Epub 2023 Apr 12.
8
A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation.
Nano Lett. 2018 Mar 14;18(3):2148-2157. doi: 10.1021/acs.nanolett.8b00432. Epub 2018 Mar 5.
9
Nanoparticles containing constrained phospholipids deliver mRNA to liver immune cells in vivo without targeting ligands.
Bioeng Transl Med. 2020 May 27;5(3):e10161. doi: 10.1002/btm2.10161. eCollection 2020 Sep.
10
High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9944-E9952. doi: 10.1073/pnas.1811276115. Epub 2018 Oct 1.

引用本文的文献

1
Lipid nanoparticles: Composition, formulation, and application.
Mol Ther Methods Clin Dev. 2025 Apr 8;33(2):101463. doi: 10.1016/j.omtm.2025.101463. eCollection 2025 Jun 12.
2
Exploring the potential of saponins as adjuvants in lipid-nanoparticle-based mRNA vaccines.
Mol Ther Methods Clin Dev. 2025 May 21;33(2):101495. doi: 10.1016/j.omtm.2025.101495. eCollection 2025 Jun 12.
3
Research progress on lipid nanoparticle messenger RNA delivery system.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025 Jun 4:1-10. doi: 10.3724/zdxbyxb-2024-0709.
4
Nucleic acid vaccines: innovations, efficacy, and applications in at-risk populations.
Front Immunol. 2025 May 14;16:1584876. doi: 10.3389/fimmu.2025.1584876. eCollection 2025.
5
Recent Advances in mRNA Delivery Systems for Cancer Therapy.
Adv Sci (Weinh). 2025 Aug;12(29):e17571. doi: 10.1002/advs.202417571. Epub 2025 May 20.
6
Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses.
Nat Commun. 2025 Apr 12;16(1):3490. doi: 10.1038/s41467-025-58548-1.
7
Recent strategies for enhanced delivery of mRNA to the lungs.
Nanomedicine (Lond). 2025 May;20(9):1043-1069. doi: 10.1080/17435889.2025.2485669. Epub 2025 Apr 7.
8
Why do lipid nanoparticles target the liver? Understanding of biodistribution and liver-specific tropism.
Mol Ther Methods Clin Dev. 2025 Feb 15;33(1):101436. doi: 10.1016/j.omtm.2025.101436. eCollection 2025 Mar 13.
9
Developing mRNA Nanomedicines with Advanced Targeting Functions.
Nanomicro Lett. 2025 Feb 21;17(1):155. doi: 10.1007/s40820-025-01665-9.
10
Digital Barcodes for High-Throughput Screening.
Chem Bio Eng. 2024 Jan 26;1(1):2-12. doi: 10.1021/cbe.3c00085. eCollection 2024 Feb 22.

本文引用的文献

1
High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing.
Proc Natl Acad Sci U S A. 2018 Oct 16;115(42):E9944-E9952. doi: 10.1073/pnas.1811276115. Epub 2018 Oct 1.
2
Modifying a Commonly Expressed Endocytic Receptor Retargets Nanoparticles in Vivo.
Nano Lett. 2018 Dec 12;18(12):7590-7600. doi: 10.1021/acs.nanolett.8b03149. Epub 2018 Sep 20.
3
Analyzing 2000 in Vivo Drug Delivery Data Points Reveals Cholesterol Structure Impacts Nanoparticle Delivery.
ACS Nano. 2018 Aug 28;12(8):8341-8349. doi: 10.1021/acsnano.8b03640. Epub 2018 Jul 20.
4
A Direct Comparison of in Vitro and in Vivo Nucleic Acid Delivery Mediated by Hundreds of Nanoparticles Reveals a Weak Correlation.
Nano Lett. 2018 Mar 14;18(3):2148-2157. doi: 10.1021/acs.nanolett.8b00432. Epub 2018 Mar 5.
5
Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran.
Pharmgenomics Pers Med. 2017 Nov 10;10:267-278. doi: 10.2147/PGPM.S87945. eCollection 2017.
6
Nutrient acquisition strategies of mammalian cells.
Nature. 2017 Jun 7;546(7657):234-242. doi: 10.1038/nature22379.
7
Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA.
Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1059-1063. doi: 10.1002/anie.201610209. Epub 2016 Dec 16.
8
Oxysterols: From cholesterol metabolites to key mediators.
Prog Lipid Res. 2016 Oct;64:152-169. doi: 10.1016/j.plipres.2016.09.002. Epub 2016 Sep 26.
9
Mechanism of hard-nanomaterial clearance by the liver.
Nat Mater. 2016 Nov;15(11):1212-1221. doi: 10.1038/nmat4718. Epub 2016 Aug 15.
10
Liver sinusoidal endothelial cells: Physiology and role in liver diseases.
J Hepatol. 2017 Jan;66(1):212-227. doi: 10.1016/j.jhep.2016.07.009. Epub 2016 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验