Suppr超能文献

转录组数据整合识别出全局和细胞特异性哮喘相关基因表达特征。

Integration of Transcriptomic Data Identifies Global and Cell-Specific Asthma-Related Gene Expression Signatures.

作者信息

Kan Mengyuan, Shumyatcher Maya, Diwadkar Avantika, Soliman Gabriel, Himes Blanca E

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:1338-1347. eCollection 2018.

Abstract

Over 140,000 transcriptomic studies performed in healthy and diseased cell and tissue types, at baseline and after exposure to various agents, are available in public repositories. Integrating results of transcriptomic datasets has been an attractive approach to identify gene expression signatures that are more robust than those obtained for individual datasets, especially datasets with small sample size. We developed Reproducible Analysis and Validation of Expression Data (RAVED), a pipeline that facilitates the creation of R Markdown reports detailing reproducible analysis of publicly available transcriptomic data, and used it to analyze asthma and glucocorticoid response microarray and RNA-Seq datasets. Subsequently, we used three approaches to integrate summary statistics of these studies and identify cell/tissue-specific and global asthma and glucocorticoid-induced gene expression changes. Transcriptomic integration methods were incorporated into an online app called REALGAR, where end-users can specify datasets to integrate and quickly obtain results that may facilitate design of experimental studies.

摘要

在公共数据库中可获取超过14万项针对健康及患病细胞和组织类型、在基线状态以及暴露于各种因素后所进行的转录组学研究。整合转录组数据集的结果一直是一种颇具吸引力的方法,用于识别比单个数据集(尤其是样本量较小的数据集)所获得的基因表达特征更为稳健的特征。我们开发了表达数据的可重复分析与验证(RAVED)工具,这是一个有助于创建R Markdown报告的流程,该报告详细阐述了对公开可用转录组数据的可重复分析,并使用它来分析哮喘和糖皮质激素反应微阵列及RNA测序数据集。随后,我们采用三种方法来整合这些研究的汇总统计数据,并识别细胞/组织特异性以及全局性的哮喘和糖皮质激素诱导的基因表达变化。转录组整合方法被纳入一个名为REALGAR的在线应用程序中,终端用户可以在其中指定要整合的数据集,并快速获得可能有助于实验研究设计的结果。

相似文献

2
Airway Smooth Muscle-Specific Transcriptomic Signatures of Glucocorticoid Exposure.
Am J Respir Cell Mol Biol. 2019 Jul;61(1):110-120. doi: 10.1165/rcmb.2018-0385OC.
3
Facilitating Analysis of Publicly Available ChIP-Seq Data for Integrative Studies.
AMIA Annu Symp Proc. 2020 Mar 4;2019:371-379. eCollection 2019.
4
Identification of sample annotation errors in gene expression datasets.
Arch Toxicol. 2015 Dec;89(12):2265-72. doi: 10.1007/s00204-015-1632-4. Epub 2015 Nov 25.
6
Disease-Specific Integration of Omics Data to Guide Functional Validation of Genetic Associations.
AMIA Annu Symp Proc. 2018 Apr 16;2017:1589-1596. eCollection 2017.
8
First step toward gene expression data integration: transcriptomic data acquisition with COMMAND>_.
BMC Bioinformatics. 2019 Jan 28;20(1):54. doi: 10.1186/s12859-019-2643-6.
10
A transcriptome-based classifier to determine molecular subtypes in medulloblastoma.
PLoS Comput Biol. 2020 Oct 29;16(10):e1008263. doi: 10.1371/journal.pcbi.1008263. eCollection 2020 Oct.

引用本文的文献

1
Integrative network analysis suggests prioritised drugs for atopic dermatitis.
J Transl Med. 2024 Jan 16;22(1):64. doi: 10.1186/s12967-024-04879-4.
2
An ancestral molecular response to nanomaterial particulates.
Nat Nanotechnol. 2023 Aug;18(8):957-966. doi: 10.1038/s41565-023-01393-4. Epub 2023 May 8.
3
CEBPD modulates the airway smooth muscle transcriptomic response to glucocorticoids.
Respir Res. 2022 Jul 28;23(1):193. doi: 10.1186/s12931-022-02119-1.
6
Multiomics analysis identifies BIRC3 as a novel glucocorticoid response-associated gene.
J Allergy Clin Immunol. 2022 Jun;149(6):1981-1991. doi: 10.1016/j.jaci.2021.11.025. Epub 2021 Dec 28.
7
Integrating Biomedical Informatics Training into Existing High School Curricula.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:190-199. eCollection 2021.
9
Insights into glucocorticoid responses derived from omics studies.
Pharmacol Ther. 2021 Feb;218:107674. doi: 10.1016/j.pharmthera.2020.107674. Epub 2020 Sep 8.
10
Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks.
Stress. 2021 Mar;24(2):130-153. doi: 10.1080/10253890.2020.1806226. Epub 2020 Aug 26.

本文引用的文献

1
Disease-Specific Integration of Omics Data to Guide Functional Validation of Genetic Associations.
AMIA Annu Symp Proc. 2018 Apr 16;2017:1589-1596. eCollection 2017.
2
Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks.
Nat Genet. 2018 Jan;50(1):42-53. doi: 10.1038/s41588-017-0014-7. Epub 2017 Dec 22.
3
Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology.
Nat Genet. 2017 Dec;49(12):1752-1757. doi: 10.1038/ng.3985. Epub 2017 Oct 30.
4
Using omics approaches to understand pulmonary diseases.
Respir Res. 2017 Aug 3;18(1):149. doi: 10.1186/s12931-017-0631-9.
5
Differential analysis of RNA-seq incorporating quantification uncertainty.
Nat Methods. 2017 Jul;14(7):687-690. doi: 10.1038/nmeth.4324. Epub 2017 Jun 5.
6
Methods to increase reproducibility in differential gene expression via meta-analysis.
Nucleic Acids Res. 2017 Jan 9;45(1):e1. doi: 10.1093/nar/gkw797. Epub 2016 Sep 14.
7
Robust classification of bacterial and viral infections via integrated host gene expression diagnostics.
Sci Transl Med. 2016 Jul 6;8(346):346ra91. doi: 10.1126/scitranslmed.aaf7165.
8
Near-optimal probabilistic RNA-seq quantification.
Nat Biotechnol. 2016 May;34(5):525-7. doi: 10.1038/nbt.3519. Epub 2016 Apr 4.
9
RNA-Seq workflow: gene-level exploratory analysis and differential expression.
F1000Res. 2015 Oct 14;4:1070. doi: 10.12688/f1000research.7035.1. eCollection 2015.
10
Vitamin D Modulates Expression of the Airway Smooth Muscle Transcriptome in Fatal Asthma.
PLoS One. 2015 Jul 24;10(7):e0134057. doi: 10.1371/journal.pone.0134057. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验