Laser Spectroscopy (DRDO/KU) Programme, UGC-CPEPA-Department of Physics, Karnatak University, Dharwad 580003, India.
Department of Physics, Vijayanagara Sri Krishnadevaraya University, Bellary 583104, India.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 May 15;215:142-152. doi: 10.1016/j.saa.2019.02.022. Epub 2019 Feb 17.
Herein we report, the effect of solvents on absorption and fluorescence spectra of Alexa Fluor-350 labelled fluorescent dye examined both experimentally and computationally. The steady state absorption and fluorescence measurements are carried out in a series of solvents to explore their solvatochromism and to determine its dipole moments. To this end, different empirical solvatochromic models like Bilot-Kawaski, Lippert-Mataga, Bakhshiev, Kawaski-Chamma-Viallet and Reichardt models are assessed against Alexa Fluor 350 dye to determine the singlet excited and ground state dipole moments. Computational studies were carried out to optimize ground and excited geometries using density functional theory (DFT) and time dependent density functional theory (TD-DFT), respectively, in vacuum. Additionally, this study encompasses estimation of the electronic transition energies from the ground to first excited state of dye employing TD-DFT. Further, TD-DFT has been combined with integral equation formalism of the polarizable continuum model (IEF-PCM) to calculate various solute-solvent interaction potentials which are then compared with experimental values. The highest occupied molecular orbital energy (HOMO), lowest unoccupied molecular orbital energy (LUMO), the energy gap, chemical hardness (η), softness (σ), electronegativity (χ) and chemical potential (μ) were estimated. Mulliken atomic charge, natural population analysis (NPA) and molecular electrostatic potential (MEP) map are correlated using density functional theory. The experimentally obtained ground and excited state dipole moments are compared with the ones obtained from computational and the results are discussed. NBO analysis is carried out to investigate the intramolecular charge transfer interactions and stabilization energy within the studied molecule.
在此,我们报告了溶剂对 Alexa Fluor-350 标记荧光染料吸收和荧光光谱的影响,这些影响是通过实验和计算来研究的。在一系列溶剂中进行了稳态吸收和荧光测量,以探索其溶剂化变色,并确定其偶极矩。为此,评估了不同的经验溶剂化变色模型,如 Bilot-Kawaski、Lippert-Mataga、Bakhshiev、Kawaski-Chamma-Viallet 和 Reichardt 模型,以确定 Alexa Fluor 350 染料的单重激发态和基态偶极矩。计算研究使用密度泛函理论 (DFT) 和时间相关密度泛函理论 (TD-DFT) 分别在真空状态下对基态和激发态几何形状进行了优化。此外,这项研究还包括使用 TD-DFT 从染料的基态到第一激发态估计电子跃迁能。此外,将 TD-DFT 与极化连续模型的积分方程形式(IEF-PCM)相结合,计算了各种溶质-溶剂相互作用势能,然后将其与实验值进行比较。计算了最高占据分子轨道能量 (HOMO)、最低未占据分子轨道能量 (LUMO)、能隙、化学硬度 (η)、柔软度 (σ)、电负性 (χ) 和化学势 (μ)。使用密度泛函理论对Mulliken 原子电荷、自然布居分析 (NPA) 和分子静电势 (MEP) 图进行了相关性分析。将实验得到的基态和激发态偶极矩与从计算中得到的偶极矩进行了比较,并对结果进行了讨论。进行了 NBO 分析,以研究研究分子内的电荷转移相互作用和稳定化能。