Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina.
Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
Appl Environ Microbiol. 2019 Apr 18;85(9). doi: 10.1128/AEM.00178-19. Print 2019 May 1.
Different species with PGPR (plant growth-promoting rhizobacterium) activity produce potent biofungicides and stimulate plant defense responses against phytopathogenic fungi. However, very little is known about how these PGPRs recognize phytopathogens and exhibit the antifungal response. Here, we report the antagonistic interaction between and the phytopathogenic fungus We demonstrate that this bacterial-fungal interaction triggers the induction of the SigB transcription factor, the master regulator of stress adaptation. Dual-growth experiments performed with live or dead mycelia or culture supernatants of showed that SigB was activated and required for the biocontrol of fungal growth. Mutations in the different regulatory pathways of SigB activation in the isogenic background revealed that only the energy-related RsbP-dependent arm of SigB activation was responsible for specific fungal detection and triggering the antagonistic response. The activation of SigB increased the expression of the operon responsible for the production of the antimicrobial cyclic lipopeptide surfactin (the operon). SigB-deficient cultures produced decreased amounts of surfactin, and cultures defective in surfactin production (Δ) were unable to control the growth of experiments of seed germination efficiency and early plant growth inhibition in the presence of confirmed the physiological importance of SigB activity for plant bioprotection. Biological control using beneficial bacteria (PGPRs) represents an attractive and environment-friendly alternative to pesticides for controlling plant diseases. Different PGPR species produce potent biofungicides and stimulate plant defense responses against phytopathogenic fungi. However, very little is known about how PGPRs recognize phytopathogens and process the antifungal response. Here, we report how triggers the induction of the stress-responsive sigma B transcription factor and the synthesis of the lipopeptide surfactin to fight the phytopathogen. Our findings show the participation of the stress-responsive regulon of PGPR in the detection and biocontrol of a phytopathogenic fungus of agronomic impact.
不同具有 PGPR(植物促生根际细菌)活性的物种产生有效的生物杀菌剂并刺激植物防御反应以对抗植物病原真菌。然而,对于这些 PGPR 如何识别植物病原体并表现出抗真菌反应知之甚少。在这里,我们报告了 和植物病原菌 之间的拮抗相互作用。我们证明,这种细菌-真菌相互作用触发了 SigB 转录因子的诱导,SigB 是 应激适应的主要调节剂。用活或死菌丝或 的培养上清液进行的双重生长实验表明,SigB 被激活并需要控制真菌生长。在同基因背景下对 SigB 激活的不同调节途径进行突变表明,只有能量相关的 RsbP 依赖性 SigB 激活臂负责特定的真菌检测和触发拮抗反应。SigB 的激活增加了负责产生抗菌环状脂肽表面活性剂( 操纵子)的操纵子的表达。SigB 缺陷型 培养物产生的表面活性剂减少,并且表面活性剂产生缺陷型 (Δ)无法控制 的生长。在存在 的情况下进行的种子发芽效率和早期植物生长抑制实验证实了 SigB 活性对植物生物保护的生理重要性。使用有益细菌(PGPR)进行生物防治代表了一种有吸引力的、环保的替代农药控制植物病害的方法。不同的 PGPR 物种产生有效的生物杀菌剂并刺激植物防御反应以对抗植物病原真菌。然而,对于 PGPR 如何识别植物病原体并处理抗真菌反应知之甚少。在这里,我们报告了 如何触发应激反应性 sigma B 转录因子的诱导和脂肽表面活性剂的合成,以对抗植物病原菌。我们的研究结果表明,PGPR 的应激反应调节子参与了对具有农业影响的植物病原菌的检测和生物控制。