Suppr超能文献

鞘脂类/Pkh1/2-TORC1/Sch9 信号通路调节酵母衣霉素诱导的应激反应中的核糖体生物发生。

Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.

机构信息

Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.

Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan

出版信息

Genetics. 2019 May;212(1):175-186. doi: 10.1534/genetics.118.301874. Epub 2019 Mar 1.

Abstract

Reduced ribosome biogenesis in response to environmental conditions is a key feature of cell adaptation to stress. For example, ribosomal genes are transcriptionally repressed when cells are exposed to tunicamycin, a protein glycosylation inhibitor that induces endoplasmic reticulum stress and blocks vesicular trafficking in the secretory pathway. Here, we describe a novel regulatory model, in which tunicamycin-mediated stress induces the accumulation of long-chain sphingoid bases and subsequent activation of Pkh1/2 signaling, which leads to decreased expression of ribosomal protein genes via the downstream effectors Pkc1 and Sch9. Target of rapamycin complex 1 (TORC1), an upstream activator of Sch9, is also required. This pathway links ribosome biogenesis to alterations in membrane lipid composition under tunicamycin-induced stress conditions. Our results suggest that sphingolipid/Pkh1/2-TORC1/Sch9 signaling is an important determinant for adaptation to tunicamycin-induced stress.

摘要

细胞适应应激的一个关键特征是响应环境条件减少核糖体生物发生。例如,当细胞暴露于衣霉素(一种蛋白糖基化抑制剂,可诱导内质网应激并阻断分泌途径中的囊泡运输)时,核糖体基因的转录受到抑制。在这里,我们描述了一个新的调节模型,其中衣霉素介导的应激诱导长链鞘氨醇碱基的积累,随后激活 Pkh1/2 信号,通过下游效应物 Pkc1 和 Sch9 导致核糖体蛋白基因的表达减少。雷帕霉素复合物 1(TORC1)是 Sch9 的上游激活物,也是必需的。该途径将核糖体生物发生与衣霉素诱导应激条件下膜脂成分的改变联系起来。我们的结果表明,鞘脂/Pkh1/2-TORC1/Sch9 信号是适应衣霉素诱导应激的重要决定因素。

相似文献

1
Sphingolipid/Pkh1/2-TORC1/Sch9 Signaling Regulates Ribosome Biogenesis in Tunicamycin-Induced Stress Response in Yeast.
Genetics. 2019 May;212(1):175-186. doi: 10.1534/genetics.118.301874. Epub 2019 Mar 1.
2
Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9.
mBio. 2017 Jan 31;8(1):e02211-16. doi: 10.1128/mBio.02211-16.
3
The Hsp70 homolog Ssb affects ribosome biogenesis via the TORC1-Sch9 signaling pathway.
Nat Commun. 2017 Oct 16;8(1):937. doi: 10.1038/s41467-017-00635-z.
4
Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress.
Mol Biol Cell. 2018 Feb 15;29(4):510-522. doi: 10.1091/mbc.E17-09-0553. Epub 2017 Dec 13.
6
Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9.
FEMS Yeast Res. 2008 Dec;8(8):1276-88. doi: 10.1111/j.1567-1364.2008.00432.x. Epub 2008 Aug 28.
7
Sch9 partially mediates TORC1 signaling to control ribosomal RNA synthesis.
Cell Cycle. 2009 Dec 15;8(24):4085-90. doi: 10.4161/cc.8.24.10170. Epub 2009 Dec 25.
8
State transitions in the TORC1 signaling pathway and information processing in Saccharomyces cerevisiae.
Genetics. 2014 Oct;198(2):773-86. doi: 10.1534/genetics.114.168369. Epub 2014 Aug 1.
9
The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae.
Mol Biol Cell. 2014 Jan;25(1):196-211. doi: 10.1091/mbc.E13-06-0340. Epub 2013 Nov 6.
10
The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1.
Biochim Biophys Acta Mol Basis Dis. 2018 Jan;1864(1):79-88. doi: 10.1016/j.bbadis.2017.10.010. Epub 2017 Oct 6.

引用本文的文献

2
Effects of CO in fungi.
Curr Opin Microbiol. 2024 Jun;79:102488. doi: 10.1016/j.mib.2024.102488. Epub 2024 May 17.
3
Membrane contact sites regulate vacuolar fission via sphingolipid metabolism.
Elife. 2024 Mar 27;12:RP89938. doi: 10.7554/eLife.89938.
5
Loss of tolerance to multiple environmental stresses due to limitation of structural diversity of complex sphingolipids.
Mol Biol Cell. 2022 Oct 1;33(12):ar105. doi: 10.1091/mbc.E22-04-0117. Epub 2022 Jul 27.
6
Involvement of Sec71 and Ubp2 in tunicamycin-induced ER stress response in the fission yeast.
Mol Biol Rep. 2022 Jun;49(6):4719-4726. doi: 10.1007/s11033-022-07321-4. Epub 2022 Apr 26.
7
Protein kinases Elm1 and Sak1 of Saccharomyces cerevisiae exerted different functions under high-glucose and heat shock stresses.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2029-2042. doi: 10.1007/s00253-022-11840-2. Epub 2022 Feb 23.
8
Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis.
Membranes (Basel). 2021 Dec 9;11(12):971. doi: 10.3390/membranes11120971.
9
Investigating the Antifungal Mechanism of Action of Polygodial by Phenotypic Screening in .
Int J Mol Sci. 2021 May 28;22(11):5756. doi: 10.3390/ijms22115756.

本文引用的文献

1
Sphingolipids activate the endoplasmic reticulum stress surveillance pathway.
J Cell Biol. 2018 Feb 5;217(2):495-505. doi: 10.1083/jcb.201708068. Epub 2018 Jan 9.
2
Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress.
Mol Biol Cell. 2018 Feb 15;29(4):510-522. doi: 10.1091/mbc.E17-09-0553. Epub 2017 Dec 13.
3
A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast.
Mol Biol Cell. 2017 Oct 1;28(20):2589-2599. doi: 10.1091/mbc.E17-01-0081. Epub 2017 Aug 9.
4
Membrane contact sites, ancient and central hubs of cellular lipid logistics.
Biochim Biophys Acta Mol Cell Res. 2017 Sep;1864(9):1450-1458. doi: 10.1016/j.bbamcr.2017.05.017. Epub 2017 May 26.
6
A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis.
Mol Cell. 2016 Nov 17;64(4):720-733. doi: 10.1016/j.molcel.2016.10.003. Epub 2016 Nov 3.
7
Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.
Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):784-792. doi: 10.1016/j.bbalip.2015.12.021. Epub 2015 Dec 30.
8
Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism.
Prog Lipid Res. 2016 Jan;61:109-33. doi: 10.1016/j.plipres.2015.11.001. Epub 2015 Dec 17.
9
Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3 complex is regulated by Gtr1 and Gtr2.
Mol Biol Cell. 2016 Jan 15;27(2):382-96. doi: 10.1091/mbc.E15-07-0470. Epub 2015 Nov 25.
10
Target of rapamycin signaling mediates vacuolar fission caused by endoplasmic reticulum stress in Saccharomyces cerevisiae.
Mol Biol Cell. 2015 Dec 15;26(25):4618-30. doi: 10.1091/mbc.E15-06-0344. Epub 2015 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验