Suppr超能文献

组蛋白去甲基化酶 KDM6A 直接感知氧气以控制染色质和细胞命运。

Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.

Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland.

出版信息

Science. 2019 Mar 15;363(6432):1217-1222. doi: 10.1126/science.aaw1026. Epub 2019 Mar 14.

Abstract

Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG-independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate.

摘要

氧感应是后生动物生物学的核心,对人类疾病有影响。哺乳动物细胞表达多种称为 2- 酮戊二酸(2-OG)依赖性双氧酶(2-OGDD)的氧依赖性酶,但它们的氧亲和力不同,因此氧感应能力也不同。2-OGDD 组蛋白去甲基酶控制组蛋白甲基化。缺氧会增加组蛋白甲基化,但这是否反映了对组蛋白去甲基酶的直接影响,还是由于缺氧诱导 HIF(缺氧诱导因子)转录因子或 2-OG 拮抗剂 2- 羟基戊二酸(2-HG)间接引起的,目前尚不清楚。在这里,我们报告说,缺氧以 HIF 和 2-HG 独立的方式促进组蛋白甲基化。我们发现,H3K27 组蛋白去甲基酶 KDM6A/UTX,但不是其同源物 KDM6B,对氧敏感。KDM6A 缺失,就像缺氧一样,阻止了 H3K27 去甲基化并阻止了细胞分化。在缺氧细胞中恢复 H3K27 甲基化平衡逆转了这些效应。因此,氧直接影响染色质调节剂来控制细胞命运。

相似文献

1
Histone demethylase KDM6A directly senses oxygen to control chromatin and cell fate.
Science. 2019 Mar 15;363(6432):1217-1222. doi: 10.1126/science.aaw1026. Epub 2019 Mar 14.
2
Insights into The Function and Regulation of Jumonji C Lysine Demethylases as Hypoxic Responsive Enzymes.
Curr Protein Pept Sci. 2020;21(7):642-654. doi: 10.2174/1389203721666191231104225.
3
Lysine Demethylase KDM6A in Differentiation, Development, and Cancer.
Mol Cell Biol. 2020 Sep 28;40(20). doi: 10.1128/MCB.00341-20.
5
JMJD3 as an epigenetic regulator in development and disease.
Int J Biochem Cell Biol. 2015 Oct;67:148-57. doi: 10.1016/j.biocel.2015.07.006. Epub 2015 Jul 17.
8
Synergistic triad epistasis of epigenetic H3K27me modifier genes, EZH2, KDM6A, and KDM6B, in gastric cancer susceptibility.
Gastric Cancer. 2019 May;22(3):640-644. doi: 10.1007/s10120-018-0888-9. Epub 2018 Oct 29.
9
Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo.
Circ Res. 2017 Apr 28;120(9):1403-1413. doi: 10.1161/CIRCRESAHA.116.308741. Epub 2017 Feb 16.

引用本文的文献

2
Hypoxia-induced metastatic heterogeneity in pancreatic cancer.
bioRxiv. 2025 Aug 29:2025.08.26.672389. doi: 10.1101/2025.08.26.672389.
3
Metabolism and epigenetics in cancer: toward personalized treatment.
Front Endocrinol (Lausanne). 2025 Jul 25;16:1530578. doi: 10.3389/fendo.2025.1530578. eCollection 2025.
5
Hypoxia-induced genome-wide DNA demethylation by DNMT3A and EMT of cancer cells.
Cell Mol Biol Lett. 2025 Aug 5;30(1):95. doi: 10.1186/s11658-025-00775-x.
7
HIF-independent oxygen sensing via KDM6A regulates ferroptosis.
Mol Cell. 2025 Jul 15. doi: 10.1016/j.molcel.2025.07.001.
8
Histone hyperacetylation disrupts spermatogonial stem cells homeostasis and impairs spermiogenesis.
Stem Cell Res Ther. 2025 Jun 15;16(1):305. doi: 10.1186/s13287-025-04385-4.
9
Oxygen needs sulfur, sulfur needs oxygen: a relationship of interdependence.
EMBO J. 2025 May 20. doi: 10.1038/s44318-025-00464-7.

本文引用的文献

1
Hypoxia induces rapid changes to histone methylation and reprograms chromatin.
Science. 2019 Mar 15;363(6432):1222-1226. doi: 10.1126/science.aau5870. Epub 2019 Mar 14.
2
Cancer-associated 2-oxoglutarate analogues modify histone methylation by inhibiting histone lysine demethylases.
J Mol Biol. 2018 Sep 14;430(18 Pt B):3081-3092. doi: 10.1016/j.jmb.2018.06.048. Epub 2018 Jul 5.
3
VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis.
BMC Bioinformatics. 2018 Apr 12;19(1):135. doi: 10.1186/s12859-018-2139-9.
4
The UCSC Genome Browser database: 2018 update.
Nucleic Acids Res. 2018 Jan 4;46(D1):D762-D769. doi: 10.1093/nar/gkx1020.
5
L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH.
Nat Chem Biol. 2017 May;13(5):494-500. doi: 10.1038/nchembio.2307. Epub 2017 Mar 6.
7
FirebrowseR: an R client to the Broad Institute's Firehose Pipeline.
Database (Oxford). 2017 Jan 6;2017. doi: 10.1093/database/baw160. Print 2017.
8
Learning To Breathe: Developmental Phase Transitions in Oxygen Status.
Trends Plant Sci. 2017 Feb;22(2):140-153. doi: 10.1016/j.tplants.2016.11.013. Epub 2016 Dec 13.
9
PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.
Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189. doi: 10.1093/nar/gkw1138. Epub 2016 Nov 29.
10
Expansion of the Gene Ontology knowledgebase and resources.
Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338. doi: 10.1093/nar/gkw1108. Epub 2016 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验