Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France.
Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France.
Methods. 2019 May 15;161:46-53. doi: 10.1016/j.ymeth.2019.03.015. Epub 2019 Mar 19.
Biosensors are biological molecules able to detect and report the presence of a target molecule by the emission of a signal. Nucleic acids are particularly appealing for the design of such molecule since their great structural plasticity makes them able to specifically interact with a wide range of ligands and their structure can rearrange upon recognition to trigger a reporting event. A biosensor is typically made of three main domains: a sensing domain that is connected to a reporting domain via a communication module in charge of transmitting the sensing event through the molecule. The communication module is therefore an instrumental element of the sensor. This module is usually empirically developed through a trial-and-error strategy with the testing of only a few combinations judged relevant by the experimenter. In this work, we introduce a novel method combining the use of droplet-based microfluidics and next generation sequencing. This method allows to functionally characterize up to a million of different sequences in a single set of experiments and, by doing so, to exhaustively test every possible sequence permutations of the communication module. Here, we demonstrate the efficiency of the approach by isolating a set of optimized RNA biosensors able to sense theophylline and to convert this recognition into fluorescence emission.
生物传感器是能够通过信号发射来检测和报告目标分子存在的生物分子。由于核酸具有极好的结构可塑性,使其能够与广泛的配体特异性相互作用,并且其结构在识别后可以重新排列以触发报告事件,因此特别适合设计此类分子。生物传感器通常由三个主要部分组成:传感域,通过负责通过分子传输传感事件的通信模块与报告域相连。因此,通信模块是传感器的一个重要组成部分。该模块通常通过试验和错误的策略进行经验性开发,仅通过实验者判断的少数几个相关组合进行测试。在这项工作中,我们引入了一种结合使用液滴微流控和下一代测序的新方法。该方法允许在一组实验中对多达一百万种不同的序列进行功能表征,并通过这种方式,对通信模块的每个可能的序列排列进行详尽的测试。在这里,我们通过分离出一组能够感应茶碱并将这种识别转化为荧光发射的优化 RNA 生物传感器来证明该方法的有效性。