Suppr超能文献

一种用于 STING 靶向免疫治疗的微粒体平台增强了自然杀伤细胞和 CD8 T 细胞介导的抗肿瘤免疫。

A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8 T cell-mediated anti-tumor immunity.

机构信息

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, NC, 27599, USA.

出版信息

Biomaterials. 2019 Jun;205:94-105. doi: 10.1016/j.biomaterials.2019.03.011. Epub 2019 Mar 14.

Abstract

Immunotherapies have significantly improved cancer patient survival, but response rates are still limited. Thus, novel formulations are needed to expand the breadth of immunotherapies. Pathogen associated molecular patterns (PAMPs) can be used to stimulate an immune response, but several pathogen recognition receptors are located within the cell, making delivery challenging. We have employed the biodegradable polymer acetalated dextran (Ace-DEX) to formulate PAMP microparticles (MPs) in order to enhance intracellular delivery. While treatment with four different PAMP MPs resulted in tumor growth inhibition, cyclic GMP-AMP (cGAMP) MPs were most effective. cGAMP MPs showed anti-tumor efficacy at doses 100-1000 fold lower than published doses of soluble cGAMP in two murine tumor models. Treatment with cGAMP MPs resulted in increased natural killer cell numbers in the tumor environment. Immune cell depletion studies confirmed that NK cells were responsible for the anti-tumor efficacy in an aggressive mouse melanoma model. NK cells and CD8 T cells were both required for early anti-tumor function in a triple negative breast cancer model. In summary, cGAMP MP treatment results in NK and T cell-dependent anti-tumor immune response.

摘要

免疫疗法显著提高了癌症患者的生存率,但响应率仍然有限。因此,需要新的制剂来扩大免疫疗法的范围。病原体相关分子模式(PAMPs)可用于刺激免疫反应,但几种病原体识别受体位于细胞内,这使得递送变得具有挑战性。我们已经使用可生物降解的聚合物乙酰化葡聚糖(Ace-DEX)来制备 PAMP 微粒(MPs),以增强细胞内递呈。虽然用四种不同的 PAMP MPs 处理导致肿瘤生长抑制,但环鸟苷酸-腺苷酸(cGAMP) MPs 最有效。cGAMP MPs 在两种小鼠肿瘤模型中的剂量比已发表的可溶性 cGAMP 低 100-1000 倍,就显示出抗肿瘤功效。cGAMP MPs 处理导致肿瘤微环境中自然杀伤细胞数量增加。免疫细胞耗竭研究证实,NK 细胞是在侵袭性小鼠黑色素瘤模型中抗肿瘤功效的原因。NK 细胞和 CD8 T 细胞都需要在三阴性乳腺癌模型中发挥早期抗肿瘤功能。总之,cGAMP MP 治疗导致 NK 和 T 细胞依赖性抗肿瘤免疫反应。

相似文献

1
A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8 T cell-mediated anti-tumor immunity.
Biomaterials. 2019 Jun;205:94-105. doi: 10.1016/j.biomaterials.2019.03.011. Epub 2019 Mar 14.
2
Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists.
Mol Pharm. 2018 Nov 5;15(11):4933-4946. doi: 10.1021/acs.molpharmaceut.8b00579. Epub 2018 Oct 15.
3
STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15408-13. doi: 10.1073/pnas.1512832112. Epub 2015 Nov 25.
5
Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.
Cell Res. 2020 Nov;30(11):966-979. doi: 10.1038/s41422-020-00395-4. Epub 2020 Aug 24.
6
Microparticle Delivery of a STING Agonist Enables Indirect Activation of NK Cells by Antigen-Presenting Cells.
Mol Pharm. 2022 Sep 5;19(9):3125-3138. doi: 10.1021/acs.molpharmaceut.2c00207. Epub 2022 Aug 1.
7
A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination.
J Control Release. 2018 Jan 28;270:1-13. doi: 10.1016/j.jconrel.2017.11.030. Epub 2017 Nov 21.
8
Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy.
J Control Release. 2018 Nov 10;289:114-124. doi: 10.1016/j.jconrel.2018.09.020. Epub 2018 Sep 24.
9
Zebularine elevates STING expression and enhances cGAMP cancer immunotherapy in mice.
Mol Ther. 2021 May 5;29(5):1758-1771. doi: 10.1016/j.ymthe.2021.02.005. Epub 2021 Feb 9.
10
STING agonist cGAMP enhances anti-tumor activity of CAR-NK cells against pancreatic cancer.
Oncoimmunology. 2022 Mar 21;11(1):2054105. doi: 10.1080/2162402X.2022.2054105. eCollection 2022.

引用本文的文献

2
cGAS-STING signaling in melanoma: regulation and therapeutic targeting.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr 14. doi: 10.1007/s00210-025-04141-8.
3
An Immunogenic Cell Death-Related Gene Signature Predicts the Prognosis and Immune Infiltration of Cervical Cancer.
Cancer Inform. 2025 Feb 24;24:11769351251323239. doi: 10.1177/11769351251323239. eCollection 2025.
4
Profile of STING agonist and inhibitor research: a bibliometric analysis.
Front Pharmacol. 2025 Feb 11;16:1528459. doi: 10.3389/fphar.2025.1528459. eCollection 2025.
5
Novel Modifications and Delivery Modes of Cyclic Dinucleotides for STING Activation in Cancer Treatment.
Int J Nanomedicine. 2025 Jan 6;20:181-197. doi: 10.2147/IJN.S503780. eCollection 2025.
6
Biomaterials' enhancement of immunotherapy for breast cancer by targeting functional cells in the tumor micro-environment.
Front Immunol. 2024 Nov 12;15:1492323. doi: 10.3389/fimmu.2024.1492323. eCollection 2024.
7
cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics.
Cell Commun Signal. 2024 Nov 18;22(1):553. doi: 10.1186/s12964-024-01860-y.
8
Recent advancements in cGAS-STING activation, tumor immune evasion, and therapeutic implications.
Med Oncol. 2024 Oct 18;41(11):291. doi: 10.1007/s12032-024-02539-7.
9
Ethoxy Acetalated Dextran-Based Biomaterials for Therapeutic Applications.
Polymers (Basel). 2024 Sep 29;16(19):2756. doi: 10.3390/polym16192756.
10
Polymeric cGAMP microparticles affect the immunogenicity of a broadly active influenza mRNA lipid nanoparticle vaccine.
J Control Release. 2024 Aug;372:168-175. doi: 10.1016/j.jconrel.2024.06.007. Epub 2024 Jun 19.

本文引用的文献

1
Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists.
Mol Pharm. 2018 Nov 5;15(11):4933-4946. doi: 10.1021/acs.molpharmaceut.8b00579. Epub 2018 Oct 15.
2
Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy.
Adv Biosyst. 2017 Feb;1(1-2). doi: 10.1002/adbi.201600013. Epub 2017 Jan 5.
3
Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis.
Front Oncol. 2018 Feb 22;8:31. doi: 10.3389/fonc.2018.00031. eCollection 2018.
5
A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination.
J Control Release. 2018 Jan 28;270:1-13. doi: 10.1016/j.jconrel.2017.11.030. Epub 2017 Nov 21.
6
Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy.
Nanomedicine. 2018 Feb;14(2):237-246. doi: 10.1016/j.nano.2017.10.013. Epub 2017 Nov 7.
7
Effects of STING stimulation on macrophages: STING agonists polarize into "classically" or "alternatively" activated macrophages?
Hum Vaccin Immunother. 2018 Feb 1;14(2):285-287. doi: 10.1080/21645515.2017.1395995. Epub 2017 Dec 1.
8
Signalling strength determines proapoptotic functions of STING.
Nat Commun. 2017 Sep 5;8(1):427. doi: 10.1038/s41467-017-00573-w.
9
Cutting Edge: Activation of STING in T Cells Induces Type I IFN Responses and Cell Death.
J Immunol. 2017 Jul 15;199(2):397-402. doi: 10.4049/jimmunol.1601999. Epub 2017 Jun 14.
10
Antigenic GM3 Lactone Mimetic Molecule Integrated Mannosylated Glycopeptide Nanofibers for the Activation and Maturation of Dendritic Cells.
ACS Appl Mater Interfaces. 2017 May 17;9(19):16035-16042. doi: 10.1021/acsami.7b04094. Epub 2017 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验