Suppr超能文献

体外和体内比较富含软骨细胞的基质金属蛋白酶敏感型聚乙二醇水凝胶中局部转化生长因子β3诱导的软骨生长。

An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3.

机构信息

Department of Chemical and Biological Engineering, 3415 Colorado Ave, University of Colorado, Boulder, CO 80309-0596, United States.

Laboratory of Musculoskeletal Tissue Engineering, Massachusetts General Hospital, Boston, MA 021143, United States.

出版信息

Acta Biomater. 2019 Jul 15;93:97-110. doi: 10.1016/j.actbio.2019.03.046. Epub 2019 Mar 23.

Abstract

While matrix-assisted autologous chondrocyte implantation has emerged as a promising therapy to treat focal chondral defects, matrices that support regeneration of hyaline cartilage remain challenging. The goal of this work was to investigate the potential of a matrix metalloproteinase (MMP)-sensitive poly(ethylene glycol) (PEG) hydrogel containing the tethered growth factor, transforming growth factor β3 (TGF-β3), and compare cartilage regeneration in vitro and in vivo. The in vitro environment comprised chemically-defined medium while the in vivo environment utilized the subcutaneous implant model in athymic mice. Porcine chondrocytes were isolated and expanded in 2D culture for 10 days prior to encapsulation. The presence of tethered TGF-β3 reduced cell spreading. Chondrocyte-laden hydrogels were analyzed for total sulfated glycosaminoglycan and collagen contents, MMP activity, and spatial deposition of aggrecan, decorin, biglycan, and collagens type II and I. The total amount of extracellular matrix (ECM) deposited in the hydrogel constructs was similar in vitro and in vivo. However, the in vitro environment was not able to support long-term culture up to 64 days of the engineered cartilage leading to the eventual breakdown of aggrecan. The in vivo environment, on the other hand, led to more elaborate ECM, which correlated with higher MMP activity, and an overall higher quality of engineered tissue that was rich in aggrecan, decorin, biglycan and collagen type II with minimal collagen type I. Overall, the MMP-sensitive PEG hydrogel containing tethered TGF-β3 is a promising matrix for hyaline cartilage regeneration in vivo. STATEMENT OF SIGNIFICANCE: Regenerating hyaline cartilage remains a significant clinical challenge. The resultant repair tissue is often fibrocartilage, which long-term cannot be sustained. The goal of this study was to investigate the potential of a synthetic hydrogel matrix containing peptide crosslinks that can be degraded by enzymes secreted by encapsulated cartilage cells (i.e., chondrocytes) and tethered growth factors, specifically TGF-β3, to provide localized chondrogenic cues to the cells. This hydrogel led to hyaline cartilage-like tissue growth in vitro and in vivo, with minimal formation of fibrocartilage. However, the tissue formed in vitro, could not be maintained long-term. In vivo this hydrogel shows great promise as a potential matrix for use in regenerating hyaline cartilage.

摘要

虽然基质辅助自体软骨细胞移植已成为治疗局灶性软骨缺损的一种有前途的治疗方法,但支持透明软骨再生的基质仍然具有挑战性。本研究的目的是研究含有基质金属蛋白酶(MMP)敏感的聚乙二醇(PEG)水凝胶的潜力,该水凝胶中含有固定化生长因子转化生长因子β3(TGF-β3),并比较体外和体内的软骨再生。体外环境采用化学定义培养基,体内环境采用无胸腺小鼠的皮下植入模型。猪软骨细胞在二维培养中培养 10 天,然后进行包封。固定化 TGF-β3 可减少细胞铺展。对负载软骨细胞的水凝胶进行总硫酸化糖胺聚糖和胶原含量、MMP 活性以及聚集蛋白聚糖、核心蛋白聚糖、双糖蛋白聚糖和 I 型和 II 型胶原的空间沉积分析。体外和体内水凝胶构建体中沉积的细胞外基质(ECM)总量相似。然而,体外环境无法支持长达 64 天的工程软骨的长期培养,最终导致聚集蛋白聚糖的破坏。另一方面,体内环境导致更精细的 ECM,这与更高的 MMP 活性相关,并导致工程组织的整体质量更高,富含聚集蛋白聚糖、核心蛋白聚糖、双糖蛋白聚糖和 II 型胶原,而 I 型胶原较少。总体而言,含有固定化 TGF-β3 的 MMP 敏感 PEG 水凝胶是体内透明软骨再生的有前途的基质。

意义声明

再生透明软骨仍然是一个重大的临床挑战。所得修复组织通常为纤维软骨,长期无法维持。本研究的目的是研究一种含有肽交联的合成水凝胶基质的潜力,该交联可以被包封的软骨细胞(即软骨细胞)分泌的酶和固定化生长因子,特别是 TGF-β3,降解,为细胞提供局部软骨形成线索。该水凝胶在体外和体内导致透明软骨样组织生长,形成纤维软骨的程度最小。然而,在体外形成的组织不能长期维持。在体内,这种水凝胶作为再生透明软骨的潜在基质具有很大的潜力。

相似文献

4
Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
Acta Biomater. 2016 Jul 15;39:1-11. doi: 10.1016/j.actbio.2016.05.015. Epub 2016 May 11.
5
Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
Osteoarthritis Cartilage. 2008 Sep;16(9):1074-82. doi: 10.1016/j.joca.2008.02.005. Epub 2008 Mar 18.
6
Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.
Clin Orthop Relat Res. 2011 Oct;469(10):2725-34. doi: 10.1007/s11999-011-1823-0.
8
Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels.
J Biomed Mater Res A. 2015 Jun;103(6):2186-92. doi: 10.1002/jbm.a.35329. Epub 2014 Sep 24.
10
Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.
Adv Healthc Mater. 2015 Apr 2;4(5):702-13. doi: 10.1002/adhm.201400695. Epub 2015 Jan 21.

引用本文的文献

1
Advanced Hydrogels in Fibrocartilage Regeneration of the Glenoid Labrum.
Gels. 2025 Aug 18;11(8):652. doi: 10.3390/gels11080652.
2
Effects of TGF-β3 on meniscus repair using human amniotic epithelial cells.
J Orthop Surg Res. 2025 Mar 10;20(1):255. doi: 10.1186/s13018-025-05640-3.
3
A versatile platform based on matrix metalloproteinase-sensitive peptides for novel diagnostic and therapeutic strategies in arthritis.
Bioact Mater. 2025 Jan 18;47:100-120. doi: 10.1016/j.bioactmat.2025.01.011. eCollection 2025 May.
5
Injectable MSC Spheroid and Microgel Granular Composites for Engineering Tissue.
Adv Mater. 2024 Apr;36(14):e2312226. doi: 10.1002/adma.202312226. Epub 2024 Jan 4.
6
Osteogenic effects of covalently tethered rhBMP-2 and rhBMP-9 in an MMP-sensitive PEG hydrogel nanocomposite.
Acta Biomater. 2023 Oct 15;170:53-67. doi: 10.1016/j.actbio.2023.08.045. Epub 2023 Aug 26.
7
Biotechnological advances and applications of human pluripotent stem cell-derived heart models.
Front Bioeng Biotechnol. 2023 Jul 25;11:1214431. doi: 10.3389/fbioe.2023.1214431. eCollection 2023.
8
Fabricating the cartilage: recent achievements.
Cytotechnology. 2023 Aug;75(4):269-292. doi: 10.1007/s10616-023-00582-2. Epub 2023 May 26.
9
Effect of Collagen and GelMA on Preservation of the Costal Chondrocytes' Phenotype in a Scaffold .
Sovrem Tekhnologii Med. 2023;15(2):5-16. doi: 10.17691/stm2023.15.2.01. Epub 2023 Mar 29.

本文引用的文献

1
Local Heterogeneities Improve Matrix Connectivity in Degradable and Photoclickable Poly(ethylene glycol) Hydrogels for Applications in Tissue Engineering.
ACS Biomater Sci Eng. 2017 Oct 9;3(10):2480-2492. doi: 10.1021/acsbiomaterials.7b00348. Epub 2017 Jul 10.
2
3
Programmable Hydrogels for Cell Encapsulation and Neo-Tissue Growth to Enable Personalized Tissue Engineering.
Adv Healthc Mater. 2018 Jan;7(1). doi: 10.1002/adhm.201700605. Epub 2017 Oct 4.
4
Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.
Tissue Eng Part A. 2017 Jan;23(1-2):55-68. doi: 10.1089/ten.TEA.2016.0055. Epub 2016 Nov 22.
5
Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel.
J Mater Chem B. 2016 May 28;4(20):3562-3574. doi: 10.1039/c6tb00006a. Epub 2016 Mar 15.
6
Stem cells display a donor dependent response to escalating levels of growth factor release from extracellular matrix-derived scaffolds.
J Tissue Eng Regen Med. 2017 Nov;11(11):2979-2987. doi: 10.1002/term.2199. Epub 2016 Jul 12.
7
The In Vitro and In Vivo Response to MMP-Sensitive Poly(Ethylene Glycol) Hydrogels.
Ann Biomed Eng. 2016 Jun;44(6):1959-69. doi: 10.1007/s10439-016-1608-4. Epub 2016 Apr 14.
9
Injectable Hyaluronan Hydrogels with Peptide-Binding Dendrimers Modulate the Controlled Release of BMP-2 and TGF-β1.
Macromol Biosci. 2015 Aug;15(8):1035-44. doi: 10.1002/mabi.201500082. Epub 2015 May 5.
10
Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes.
PLoS One. 2015 Mar 16;10(3):e0120857. doi: 10.1371/journal.pone.0120857. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验