Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
Biomater Sci. 2019 May 28;7(6):2410-2420. doi: 10.1039/c9bm00058e.
Micro and nano-particulate carriers have potential to increase bioavailability of oral drugs, but must first overcome the mucus barrier of the intestinal epithelium to facilitate absorption and entry to systemic circulation. We report on mucus-silica nanoparticulate carrier interactions in an in vitro intestine-on-a-chip (IOAC) microfluidic model. Caco-2 cells cultured within the IOAC model recapitulate the morphology of the human intestinal epithelium that is currently lacking in traditional static Transwell models. Fine control over the cell culture conditions produced a mucus layer, previously problematic to achieve without employing cell co-culture. The microdevice design also allowed for direct imaging of silica particulate carrier (40-700 nm) uptake through the mucus and cellular monolayer. PEGylated particulate carriers penetrated more readily through the mucus layer compared to non-PEGylated particulate carriers while larger particulate carriers tended to retard particulate carrier penetration through a dense mucus mesh. This was confirmed via imaging flow cytometry and UV-fluorescence spectroscopy. The IOAC also demonstrated the ability to mimic intestinal peristaltic fluidic conditions, which in turn affects the particulate carrier uptake. This in vitro IOAC model has potential to directly elucidate mucus interactions and uptake mechanisms for a range of drug carrier systems.
微纳米颗粒载体有增加口服药物生物利用度的潜力,但必须首先克服肠道上皮的黏液屏障,以促进吸收和进入体循环。我们报告了在体外肠芯片(IOAC)微流控模型中黏液-二氧化硅纳米颗粒载体相互作用。在 IOAC 模型中培养的 Caco-2 细胞再现了人肠道上皮的形态,这在传统的静态 Transwell 模型中是缺乏的。对细胞培养条件的精细控制产生了一层黏液,而在不采用细胞共培养的情况下,这层黏液很难实现。微器件设计还允许通过黏液和细胞单层直接对 40-700nm 大小的二氧化硅颗粒载体的摄取进行成像。与非 PEG 化颗粒载体相比,PEG 化颗粒载体更容易穿透黏液层,而较大的颗粒载体往往会阻碍颗粒载体通过密集的黏液网的穿透。这通过成像流式细胞术和紫外荧光光谱得到了证实。IOAC 还证明了模拟肠道蠕动流体条件的能力,这反过来又影响颗粒载体的摄取。这种体外 IOAC 模型有可能直接阐明一系列药物载体系统的黏液相互作用和摄取机制。