Suppr超能文献

弹性成像可实现对肾脏纤维化的非侵入性分期和治疗监测。

Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis.

机构信息

Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany.

Department of Radiology, Ningbo Medical Center Li Huili Hospital, 315040 Ningbo, China.

出版信息

Sci Transl Med. 2019 Apr 3;11(486). doi: 10.1126/scitranslmed.aat4865.

Abstract

Fibrosis is the common endpoint and currently the best predictor of progression of chronic kidney diseases (CKDs). Despite several drawbacks, biopsies remain the only available means to specifically assess the extent of renal fibrosis. Here, we show that molecular imaging of the extracellular matrix protein elastin allows for noninvasive staging and longitudinal monitoring of renal fibrosis. Elastin was hardly expressed in healthy mouse, rat, and human kidneys, whereas it was highly up-regulated in cortical, medullar, and perivascular regions in progressive CKD. Compared to a clinically relevant control contrast agent, the elastin-specific magnetic resonance imaging agent ESMA specifically detected elastin expression in multiple mouse models of renal fibrosis and also in fibrotic human kidneys. Elastin imaging allowed for repetitive and reproducible assessment of renal fibrosis, and it enabled longitudinal monitoring of therapeutic interventions, accurately capturing anti-fibrotic therapy effects. Last, in a model of reversible renal injury, elastin imaging detected ensuing fibrosis not identifiable via routine assessment of kidney function. Elastin imaging thus has the potential to become a noninvasive, specific imaging method to assess renal fibrosis.

摘要

纤维化是慢性肾脏病(CKD)进展的共同终点,也是目前最好的预测指标。尽管存在一些缺点,但活检仍然是唯一可用的方法,可特异性评估肾脏纤维化的程度。在这里,我们展示了细胞外基质蛋白弹性蛋白的分子成像可实现对肾脏纤维化的非侵入性分期和纵向监测。健康的小鼠、大鼠和人肾脏中几乎不表达弹性蛋白,而在进行性 CKD 的皮质、髓质和血管周围区域中则高度上调。与临床相关的对照造影剂相比,弹性蛋白特异性磁共振成像造影剂 ESMA 特异性地在多种小鼠肾脏纤维化模型以及纤维化的人类肾脏中检测到弹性蛋白的表达。弹性蛋白成像可重复、可重现地评估肾脏纤维化,并能进行治疗干预的纵向监测,准确捕捉抗纤维化治疗效果。最后,在可逆性肾损伤模型中,弹性蛋白成像检测到了通过常规肾功能评估无法识别的后续纤维化。因此,弹性蛋白成像有可能成为一种非侵入性、特异性的评估肾脏纤维化的成像方法。

相似文献

1
Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis.
Sci Transl Med. 2019 Apr 3;11(486). doi: 10.1126/scitranslmed.aat4865.
2
In vivo assessment of aortic aneurysm wall integrity using elastin-specific molecular magnetic resonance imaging.
Circ Cardiovasc Imaging. 2014 Jul;7(4):679-89. doi: 10.1161/CIRCIMAGING.113.001131. Epub 2014 May 28.
3
Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold.
J Histochem Cytochem. 2019 Sep;67(9):643-661. doi: 10.1369/0022155419849388. Epub 2019 May 22.
4
Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent.
Nat Med. 2011 Mar;17(3):383-8. doi: 10.1038/nm.2310. Epub 2011 Feb 20.
5
Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease.
Am J Physiol Renal Physiol. 2024 Aug 1;327(2):F235-F244. doi: 10.1152/ajprenal.00099.2024. Epub 2024 Jun 13.
6
Recent Advances in Magnetic Resonance Imaging Assessment of Renal Fibrosis.
Adv Chronic Kidney Dis. 2017 May;24(3):150-153. doi: 10.1053/j.ackd.2017.03.005.
7
Application value of Philips Ingenuity TF PET/CT scanner imaging agent FAP in evaluating renal fibrosis.
Hell J Nucl Med. 2025 Jan-Apr;28(1):28-35. doi: 10.1967/s002449912784. Epub 2025 Apr 7.
10
Involvement of YTHDF1 in renal fibrosis progression via up-regulating YAP.
FASEB J. 2022 Feb;36(2):e22144. doi: 10.1096/fj.202100172RR.

引用本文的文献

1
Fibrotic Disease: from Signaling Pathways and Biomarkers to Molecular Imaging.
Mol Imaging Biol. 2025 Aug 11. doi: 10.1007/s11307-025-02038-9.
4
Fibrosis: cross-organ biology and pathways to development of innovative drugs.
Nat Rev Drug Discov. 2025 Mar 18. doi: 10.1038/s41573-025-01158-9.
5
A first-in-human study of quantitative ultrasound to assess transplant kidney fibrosis.
Nat Med. 2025 Mar;31(3):970-978. doi: 10.1038/s41591-024-03417-5. Epub 2025 Mar 3.
7
Multimodal ultrasound deep learning to detect fibrosis in early chronic kidney disease.
Ren Fail. 2024 Dec;46(2):2417740. doi: 10.1080/0886022X.2024.2417740. Epub 2024 Oct 22.
10
MRI of kidney size matters.
MAGMA. 2024 Aug;37(4):651-669. doi: 10.1007/s10334-024-01168-5. Epub 2024 Jul 3.

本文引用的文献

2
Fibrosis imaging: Current concepts and future directions.
Adv Drug Deliv Rev. 2017 Nov 1;121:9-26. doi: 10.1016/j.addr.2017.10.013. Epub 2017 Nov 20.
3
Molecular MR imaging of fibrosis in a mouse model of pancreatic cancer.
Sci Rep. 2017 Aug 14;7(1):8114. doi: 10.1038/s41598-017-08838-6.
4
Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models.
Sci Transl Med. 2017 Apr 5;9(384). doi: 10.1126/scitranslmed.aaf4696.
5
Crystal nephropathies: mechanisms of crystal-induced kidney injury.
Nat Rev Nephrol. 2017 Apr;13(4):226-240. doi: 10.1038/nrneph.2017.10. Epub 2017 Feb 20.
6
Crystallopathies.
N Engl J Med. 2016 Sep 29;375(13):e29. doi: 10.1056/NEJMc1609332.
7
An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice.
Kidney Int. 2016 Sep;90(3):525-39. doi: 10.1016/j.kint.2016.03.035. Epub 2016 Jun 2.
8
Radiologic imaging of the renal parenchyma structure and function.
Nat Rev Nephrol. 2016 Jun;12(6):348-59. doi: 10.1038/nrneph.2016.44. Epub 2016 Apr 12.
9
Keratins are novel markers of renal epithelial cell injury.
Kidney Int. 2016 Apr;89(4):792-808. doi: 10.1016/j.kint.2015.10.015. Epub 2016 Feb 6.
10
The role of PDGF-D in healthy and fibrotic kidneys.
Kidney Int. 2016 Apr;89(4):848-61. doi: 10.1016/j.kint.2015.12.037. Epub 2016 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验