Lin Che-Yi, Oulhen Nathalie, Wessel Gary, Su Yi-Hsien
Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States.
Methods Cell Biol. 2019;151:305-321. doi: 10.1016/bs.mcb.2018.10.004. Epub 2018 Nov 29.
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) technology enables rapid, targeted, and efficient changes in the genomes of various model organisms. The short guide RNAs (gRNAs) of the CRISPR/Cas9 system can be designed to recognize target DNA within coding regions for functional gene knockouts. Several studies have demonstrated that the CRISPR/Cas9 system efficiently and specifically targets sea urchin genes and results in expected mutant phenotypes. In addition to disrupting gene functions, modifications and additions to the Cas9 protein enable alternative activities targeted to specific sites within the genome. This includes a fusion of cytidine deaminase to Cas9 (Cas9-DA) for single nucleotide conversion in targeted sites. In this chapter, we describe detailed methods for the CRISPR/Cas9 application in sea urchin embryos, including gRNA design, in vitro synthesis of single guide RNA (sgRNA), and the usages of the CRISPR/Cas9 technology for gene knockout and single nucleotide editing. Methods for genotyping the resultant embryos are also provided for assessing efficiencies of gene editing.
CRISPR(成簇规律间隔短回文重复序列)/Cas9(CRISPR相关核酸酶9)技术能够对各种模式生物的基因组进行快速、靶向且高效的改变。CRISPR/Cas9系统的短指导RNA(gRNA)可设计用于识别编码区域内的靶DNA,以实现功能性基因敲除。多项研究表明,CRISPR/Cas9系统能高效且特异性地靶向海胆基因,并产生预期的突变表型。除了破坏基因功能外,对Cas9蛋白进行修饰和添加可实现针对基因组内特定位点的其他活性。这包括将胞嘧啶脱氨酶与Cas9融合(Cas9-DA),用于在靶位点进行单核苷酸转换。在本章中,我们描述了CRISPR/Cas9在海胆胚胎中应用的详细方法,包括gRNA设计、单指导RNA(sgRNA)的体外合成,以及CRISPR/Cas9技术用于基因敲除和单核苷酸编辑的方法。还提供了对所得胚胎进行基因分型的方法,以评估基因编辑效率。