Suppr超能文献

CRISPR/Cas9介导的海胆基因组编辑。

CRISPR/Cas9-mediated genome editing in sea urchins.

作者信息

Lin Che-Yi, Oulhen Nathalie, Wessel Gary, Su Yi-Hsien

机构信息

Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.

Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States.

出版信息

Methods Cell Biol. 2019;151:305-321. doi: 10.1016/bs.mcb.2018.10.004. Epub 2018 Nov 29.

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (CRISPR-associated nuclease 9) technology enables rapid, targeted, and efficient changes in the genomes of various model organisms. The short guide RNAs (gRNAs) of the CRISPR/Cas9 system can be designed to recognize target DNA within coding regions for functional gene knockouts. Several studies have demonstrated that the CRISPR/Cas9 system efficiently and specifically targets sea urchin genes and results in expected mutant phenotypes. In addition to disrupting gene functions, modifications and additions to the Cas9 protein enable alternative activities targeted to specific sites within the genome. This includes a fusion of cytidine deaminase to Cas9 (Cas9-DA) for single nucleotide conversion in targeted sites. In this chapter, we describe detailed methods for the CRISPR/Cas9 application in sea urchin embryos, including gRNA design, in vitro synthesis of single guide RNA (sgRNA), and the usages of the CRISPR/Cas9 technology for gene knockout and single nucleotide editing. Methods for genotyping the resultant embryos are also provided for assessing efficiencies of gene editing.

摘要

CRISPR(成簇规律间隔短回文重复序列)/Cas9(CRISPR相关核酸酶9)技术能够对各种模式生物的基因组进行快速、靶向且高效的改变。CRISPR/Cas9系统的短指导RNA(gRNA)可设计用于识别编码区域内的靶DNA,以实现功能性基因敲除。多项研究表明,CRISPR/Cas9系统能高效且特异性地靶向海胆基因,并产生预期的突变表型。除了破坏基因功能外,对Cas9蛋白进行修饰和添加可实现针对基因组内特定位点的其他活性。这包括将胞嘧啶脱氨酶与Cas9融合(Cas9-DA),用于在靶位点进行单核苷酸转换。在本章中,我们描述了CRISPR/Cas9在海胆胚胎中应用的详细方法,包括gRNA设计、单指导RNA(sgRNA)的体外合成,以及CRISPR/Cas9技术用于基因敲除和单核苷酸编辑的方法。还提供了对所得胚胎进行基因分型的方法,以评估基因编辑效率。

相似文献

1
CRISPR/Cas9-mediated genome editing in sea urchins.
Methods Cell Biol. 2019;151:305-321. doi: 10.1016/bs.mcb.2018.10.004. Epub 2018 Nov 29.
2
Establishment of knockout adult sea urchins by using a CRISPR-Cas9 system.
Dev Growth Differ. 2019 Aug;61(6):378-388. doi: 10.1111/dgd.12624. Epub 2019 Jul 29.
3
Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
Dev Biol. 2016 Jan 15;409(2):420-8. doi: 10.1016/j.ydbio.2015.11.018. Epub 2015 Nov 26.
4
Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.
Brief Funct Genomics. 2017 Sep 1;16(5):309-318. doi: 10.1093/bfgp/elx011.
5
CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.01834-18. Print 2018 Dec 1.
6
CRISPR-Cas9-Mediated Gene Knockout in a Non-Model Sea Urchin, .
Zoolog Sci. 2024 Apr;41(2):159-166. doi: 10.2108/zs230052.
7
CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
mBio. 2015 Jul 21;6(4):e00861. doi: 10.1128/mBio.00861-15.
8
Targeted Base Editing with CRISPR-Deaminase in Tomato.
Methods Mol Biol. 2019;1917:297-307. doi: 10.1007/978-1-4939-8991-1_22.
9
Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.
Dev Dyn. 2017 Dec;246(12):1036-1046. doi: 10.1002/dvdy.24586. Epub 2017 Oct 13.

引用本文的文献

2
Echinobase: a resource to support the echinoderm research community.
Genetics. 2024 May 7;227(1). doi: 10.1093/genetics/iyae002.
3
CRISPR/Cas9 knockin methodology for the sea urchin embryo.
Mol Reprod Dev. 2023 Feb;90(2):69-72. doi: 10.1002/mrd.23672. Epub 2023 Jan 31.
4
An optimized Tet-On system for conditional control of gene expression in sea urchins.
Development. 2023 Jan 1;150(1). doi: 10.1242/dev.201373. Epub 2023 Jan 6.
5
Light-induced, spatiotemporal control of protein in the developing embryo of the sea urchin.
Dev Biol. 2021 Oct;478:13-24. doi: 10.1016/j.ydbio.2021.06.006. Epub 2021 Jun 18.
6
Conditional gene knockdowns in sea urchins using caged morpholinos.
Dev Biol. 2021 Jul;475:21-29. doi: 10.1016/j.ydbio.2021.02.014. Epub 2021 Mar 5.
7
Comparative and Evolutionary Physiology of Vasopressin/ Oxytocin-Type Neuropeptide Signaling in Invertebrates.
Front Endocrinol (Lausanne). 2020 Apr 17;11:225. doi: 10.3389/fendo.2020.00225. eCollection 2020.

本文引用的文献

1
Echinobase: an expanding resource for echinoderm genomic information.
Database (Oxford). 2017 Jan 1;2017. doi: 10.1093/database/bax074.
3
Guidelines for morpholino use in zebrafish.
PLoS Genet. 2017 Oct 19;13(10):e1007000. doi: 10.1371/journal.pgen.1007000. eCollection 2017 Oct.
4
Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.
Dev Dyn. 2017 Dec;246(12):1036-1046. doi: 10.1002/dvdy.24586. Epub 2017 Oct 13.
5
Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
Development. 2017 Oct 1;144(19):3602-3611. doi: 10.1242/dev.151720. Epub 2017 Aug 29.
6
Genetic compensation: A phenomenon in search of mechanisms.
PLoS Genet. 2017 Jul 13;13(7):e1006780. doi: 10.1371/journal.pgen.1006780. eCollection 2017 Jul.
7
Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.
Brief Funct Genomics. 2017 Sep 1;16(5):309-318. doi: 10.1093/bfgp/elx011.
8
Transient translational quiescence in primordial germ cells.
Development. 2017 Apr 1;144(7):1201-1210. doi: 10.1242/dev.144170. Epub 2017 Feb 24.
9
Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo.
Mol Reprod Dev. 2016 Dec;83(12):1046-1047. doi: 10.1002/mrd.22757. Epub 2016 Nov 30.
10
Optimized CRISPR-Cas9 System for Genome Editing in Zebrafish.
Cold Spring Harb Protoc. 2016 Oct 3;2016(10):2016/10/pdb.prot086850. doi: 10.1101/pdb.prot086850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验